摘要
本文讨论奇异摄动椭圆抛物型偏微分方程的周期边界问题.构造一个差分格式,利用分离解的奇性项的方法,结合问题的渐近展开,证明所构造的差分格式具有O(τ+h^2)一致收敛阶.
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(τ+h2).
出处
《应用数学和力学》
CSCD
北大核心
1991年第3期259-268,共10页
Applied Mathematics and Mechanics
基金
国家自然科学基金
福建省自然科学基金
关键词
偏微分方程
奇异摄动
差分格式
elliptic-parabolic partial differential equation, singular perturbation problem, periodic boundary, difference scheme, uniformly convergence