摘要
本文提出完全近似法的一种推广形式:引用渐近线性化的概念,通过对坐标作包含因变量的非线性泛函的变换,把原有的非线性问题线性化,从而以首项渐近解和相应的坐标变换给出原问题的较高阶的近似解析解.对模型方程和若干弱非线性振动和波动问题的分析表明,本文提出的方法是简捷而有效的.
This paper presents a generalized form of the method of full approximation. By using the concept of asymptotic linearization and making the coordinate transformations including the nonlinear functionals of dependent variables, the original nonlinear problems are linearized and their higher-order solutions are given in terms of the first-term asymptotic solutions and corresponding transformations. The analysis of a model equation and some problems of weakly nonlinear oscillations and waves with the geneialized method shows that it is effective and straightforward.
出处
《应用数学和力学》
EI
CSCD
北大核心
1991年第3期237-244,共8页
Applied Mathematics and Mechanics
基金
国家自然科学基金
上海市自然科学基金
关键词
完全近似法
摄动法
渐近线性化
perturbation methods, methods of full approximation, asymptotic linearization, nonlinear -waves, nonlinear oscillations