摘要
本文在计算力学范围内证明了,平衡力系的影响,由近及远按矩阵连分式的规律衰减.该衰减往往不慢于,但并非总是不慢于指数衰减或幂次衰减.本文结果可用于估计某些简化假定在计算中引入的误差.
In this paper, a new mathematical form, matrix continued fraction (MCF) is introduced to describe the decay of effects of an equilibrant system of forces acting on a sphere of an elastic body. By this way, the famous Saint-Venant's principle is proved often but not always valid in computational mechanics.
出处
《应用数学和力学》
EI
CSCD
北大核心
1991年第4期321-330,共10页
Applied Mathematics and Mechanics
关键词
计算力学
静少衰减
矩阵连分式
matrix continued fraction, static decay, Saint-Venant's principle, matrix structural analysis, substructure, superelement, chain model