摘要
研究了基于 CIMS系统下 ATM网络中的流量控制和拥塞控制 ,对 CAC控制采用了 p RAM神经网络的方法 ,具有很好的控制作用 ;并分别对不同业务类型 ABR、UBR产生拥塞控制时所采取的方法进行了研究 ,从而在满足 Qo S参数的同时保证较好的流量控制和
The research methods on the congestion control and flow control in asynchronous transfer mode (ATM)networks based on CIMS system,especially a neural admission controller based on the probabilistic pRAM neuron model are presented, The control of ABR and UBR services are solved by two methods seperately. Two kinds of scheme are studied which showed not only can give a guarantee of better flow control and TCP connection requesting QoS.
出处
《青岛化工学院学报(自然科学版)》
2002年第2期65-69,共5页
Journal of Qingdao Institute of Chemical Technology(Natural Science Edition)