摘要
The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe 2+ and La 3+ in FeCl 2 LiCl DMSO and LaCl 3 LiCl DMSO systems on Pt, Cu and Ni cathodes. The electroreduction of Fe 2+ to Fe is irreversible in one step,while the electroreduction of La 3+ to La is quasi reversible. The diffusion coefficient of La 3+ in LaCl 3 LiCl DMSO system at 298 K was 3 1×10 -6 cm 2·s -1 . The diffusion coefficient and transfer coefficient of Fe 2+ in FeCl 2 LiCl DMSO system at 298 K were 2 54×10 -6 cm 2·s -1 and 0 24, respectively. La Fe alloy films containing La from 22 7% to 37 1% (mass fraction) were prepared by potentiostatic electrolysis on Cu substrates at a deposition potential from -1 750 to -2 450 V (vs SCE). The fine La Fe alloy films were also obtained by pulse electrolysis at a pulse current densities from 2 to 6 mA·cm -2 . The surfaces of these alloy films are smooth, adhesive and uniform, and have metallic luster.
The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe 2+ and La 3+ in FeCl 2 LiCl DMSO and LaCl 3 LiCl DMSO systems on Pt, Cu and Ni cathodes. The electroreduction of Fe 2+ to Fe is irreversible in one step,while the electroreduction of La 3+ to La is quasi reversible. The diffusion coefficient of La 3+ in LaCl 3 LiCl DMSO system at 298 K was 3 1×10 -6 cm 2·s -1 . The diffusion coefficient and transfer coefficient of Fe 2+ in FeCl 2 LiCl DMSO system at 298 K were 2 54×10 -6 cm 2·s -1 and 0 24, respectively. La Fe alloy films containing La from 22 7% to 37 1% (mass fraction) were prepared by potentiostatic electrolysis on Cu substrates at a deposition potential from -1 750 to -2 450 V (vs SCE). The fine La Fe alloy films were also obtained by pulse electrolysis at a pulse current densities from 2 to 6 mA·cm -2 . The surfaces of these alloy films are smooth, adhesive and uniform, and have metallic luster.
基金
ProjectsupportedbytheScienceFoundationofGuangdongProvince (0 112 15 )