摘要
分析卡尔那普以及波普尔得出“无限全称命题概率为0”结论的原因,介绍欣迪卡α-λ二维系统和宁尼鲁托 K维系统的基本概念和主要结果。指出“无限全称命题概率为0”是归纳概率逻辑发展早期由于理论不成熟而产生的问题,这个问题在20世纪70年代已经解决。说明归纳概率逻辑与归纳推理的关系。
Carnap's function m* has in L a mull value for universal factual sentences. Popper holds thatprobability of each genuine universa1 generalization in an infinite domain is zero. But in Hintikka's andNiiniluoto's systems genuine universal generalizations may receive non-zero prior probabilities. This essaydiscusses Carnap's and Popper's theories, states Hintikka's α-λ system and Niiniluoto's K - dimensionalsystem, explains re1ations between inductive probability logic and inductive inferences.
出处
《北京师范大学学报(社会科学版)》
CSSCI
北大核心
2002年第3期131-139,共9页
Journal of Beijing Normal University(Social Sciences)