摘要
基于支持向量机 ( SVM)在处理小样本、高维数及泛化性能强等方面的优势 ,提出了一种基于主元分析 ( PCA)与 SVM的人脸识别方法 .利用 PCA方法对人脸图像进行特征提取 ,再利用SVM与最近邻分类器相结合的策略对特征向量进行分类识别 .剑桥
Based on the high performance of support vector machine(SVM) in tackling small sample size, high dimension and its good generalization, this paper proposed a face recognition method based on principal component analysis(PCA) and SVM. The PCA is used to reduce the dimension and extract the feature, then the SVM combined with the nearest distance classifier is used for classification. The ORL face database was used to test the proposed method. The experiment result shows that the method is effective.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2002年第6期884-886,共3页
Journal of Shanghai Jiaotong University
关键词
人脸识别
支持向量机
主元分析
最近邻距离分类器
模式识别
特征提取
face recognition
support vector machine(SVM)
principal component analysis(PCA)
nearest distance classifier