期刊文献+

一类非线性退缩抛物方程的Cauchy问题

A Class of the Cauchy Problem for the Nonlinear Degenerate Parabolic Equation
下载PDF
导出
摘要 讨论带吸收项的非线性双重退缩抛物方程ut =div(| um|p-2 um) -uq 具有初值u(x ,0 ) =μ∈L∞loc(RN)的Cauchy问题 .利用正则化方法 ,首先得到了正则化问题非负古典解的一致估计 ,最后在初值满足一定的增长条件下 ,证明了双重退缩抛物方程Cauchy问题弱解的存在性与不存在性 . In this paper,we study the Cauchy problem with initial datum u(x,0)=μ∈L ∞ loc (R N) for the nonlinear doubly degenerate parabolic equation with asborption u t=div(|u m| p-2 u m)-u q .First,the uniform estimate of the nonnegative classical solution for the regularization problem are obtained.Finally,it is proved by method of regularization that the existence and nonexistence of weak solution of the Cauchy problem under the initial datum satisfy some growth condition.
作者 陈明玉
出处 《泉州师范学院学报》 2002年第4期3-7,共5页 Journal of Quanzhou Normal University
基金 泉州师范学院专款资助科研项目 (2 0 0 2 -I- 17)
关键词 非线性退缩抛物方程 CAUCHY问题 吸收项 双重退缩抛物方程 弱解 正则化方法 非负古典解 absorption doubly degenerate parabolic equation nonlinear Cauchy problem weak solution
  • 相关文献

参考文献6

  • 1Zhao Junning,Liu Huizhao.The Cauchy problem of the Porous Medium equation with absorption[J].J.Partial Diff.Eqs.1994,(7):231-247.
  • 2Zhao Junning.The Cauchy problem of p-Laplacian equation with absorption[J].Nonlinear Analysis and Microlocal Analysis Proceedings of the International Conference at Nankai Inst.of Math.Tianjin,1991,226-235.
  • 3陈明玉.带吸收项的非线性双重退缩抛物方程的Cauchy问题[J].数学研究,2000,33(3):285-291. 被引量:2
  • 4Ladyzenskaya O A.New equation for the description of incompressible fluids and solvability in the large boundary value problem for them[J].Proc Steklov Inst.Math.1967, 102:95-118.
  • 5M.H.普劳特,H.F.温伯格.微分方程的最大值原理[M].叶其孝,刘西垣译.北京:北京科学出版社,1985.
  • 6Ivanov A V.Holder estimates for quasilinear doubly degenerate parabolic equations[J].J.Soviet Math.1991,56(2):2320~2347.

二级参考文献3

  • 1Zhao Junning,Chin J Contemporary Math,1995年,16卷,2期,173页
  • 2Zhao Junning,J Partial Diff Eqs,1994年,7卷,231页
  • 3Zhao Junning,Procedings of the Int Conference at Nankai Instilute of Mathematics,1991年,226页

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部