期刊文献+

求解统计不相关的最佳鉴别矢量的统一算法 被引量:1

A Unified Algorithm for the Computation of Statistically Uncorrelated Optimal Discriminant Vectors
下载PDF
导出
摘要 Fisher最佳鉴别准则是高维模式分析中的有效方法 ,其关键是求解最佳鉴别矢量。统计不相关的最佳鉴别矢量保证模式矢量投影后得到的特征是统计不相关的 ,已有的计算统计不相关的最佳鉴别矢量算法不能计算小样本的情形 (类内散布矩阵是奇异的 ) ,针对这种情形 ,该文给出了一种对大小样本都能精确计算统计不相关最佳鉴别矢量的统一算法。在大样本情形下 ,该方法得到的结果与已有的方法相同。为验证算法的有效性 ,将其用于人脸识别实验 。 Fisher optimal discriminant criterion is an efficient method to extract classifying information of high dimensional patterns.The key of the method is how to calculate the optimal discriminant vectors.The statistically uncorrelated optimal discriminant vectors ensure that the projected features of the pattern vectors are statistically uncorrelated.The existed algorithm computing the statistically uncorrelated optimal discriminant vectors is ineffective for the case of the small samples (the within class scatter matrix is singular).This paper presented a unified algorithm that can calculate the statistically uncorrelated optimal discriminant vectors exactly both for the small samples and large ones.In the case of large samples,the result of our method is the same as the existed method.In order to test the efficiency of our method,it is used to recognize human faces.Experimental results have shown that our method has better recognition performance than existed method.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2002年第3期290-294,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金资助项目 (6 0 0 72 0 34)
关键词 统一算法 最佳鉴别矢量 统计不相关 模式识别 人脸识别 optimal discriminant vectors,statistical uncorrelation,pattern recognition face recognition
  • 相关文献

参考文献1

共引文献50

同被引文献12

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 3RichardODuda PeterEHart DavidGStork.模式分类[M].北京:机械工业出版社,2003.134-174.
  • 4徐仲 张凯院 陆全.矩阵论简明教程[M].北京:科学出版社,2002.140-143.
  • 5K Liu,J Y Yang.An Efficient Algorithm for Foley-Sammon Optimal Set of Discriminant Vectors by Algebraic Method[J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6(5):817-829.
  • 6Z Jin,J Y Yang,Z S Hu,et al.Face Recognition Based on Uncorrelated Discriminant Transformation[J].Pattern Recognition,2001,34(7):1405-1416.
  • 7J Yang,J Y Yang.Why Can LDA be Performed in PCA Transformed Space?[J].Pattern Recognition,2003,36(2):563-566.
  • 8H Yu,J Yang.A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070.
  • 9L F Chen,H Y Mark Liao,M T Ko,et al.A New LDA-based Face Recognition System Which can Solve the Small Sample Size Problem[J].Pattern Recognition,2000,33(10):1713-1726.
  • 10W M Zheng,L Zhao,C R Zou.An Efficient Algorithm to Solve the Small Sample Size Problem for LDA[J].Pattern Recognition,2004,37:1077-1079.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部