期刊文献+

具有一般非线性项的Cahn-Hilliard方程的整体吸引子 被引量:5

Global Attactor for Cahn-Hilliard Equations with More General Nonlinear Term
下载PDF
导出
摘要 改变了Cahn Hilliard方程 : u t-△k(u) =0 , k(u) =-λ△u+f(u) , u n =- △u n =0 ,u(x ,0 ) =u0 (x)的非线性项f(u) ,用较一般限制条件代替了“f(u)是首项系数为正的奇数多项式”这一条件 ,并证明了该方程存在紧连通整体吸引子 . In this paper, the existence of compact and connected global attractor for the Cahn Hilliard equationsut-△k(u)=0, k(u)=-λ△u+f(u), un=-△un=0, u(x,0)=u 0(x)is transformed. The condition that f(u) is a polynomial of odd degree with a positive leadin coefficient is replaced by move general limited one. It is proved that such system possesses a compact and connected global attractor.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2002年第4期333-338,共6页 Journal of Sichuan Normal University(Natural Science)
基金 四川省重点科研基金资助项目
关键词 CAHN-HILLIARD方程 非线性项 整体吸引子 Cahn Hilliard equations Nonlinear term Global attractor
  • 相关文献

参考文献2

二级参考文献3

  • 1Li D S,J Diff Eqs,1998年,149卷,191页
  • 2Guo Boling,Northeastern Math J,1994年,10卷,3期,309页
  • 3郭大钧,非线性泛函分析,1985年

共引文献9

同被引文献28

  • 1丁丹平,田立新.耗散Camassa-Holm方程的吸引子[J].应用数学学报,2004,27(3):536-545. 被引量:13
  • 2MA Tian,WANG Shouhong.DYNAMIC BIFURCATION OF NONLINEAR EVOLUTION EQUATIONS[J].Chinese Annals of Mathematics,Series B,2005,26(2):185-206. 被引量:16
  • 3王小虎,李树勇.含时滞的部分耗散反应扩散方程的全局吸引子[J].四川师范大学学报(自然科学版),2006,29(5):521-525. 被引量:3
  • 4Chueshouv I D. Global attractors for non-linear problem of mathematical physics[ J ]. Uspekhi Math Nauk, 1993,48:135 - 162.
  • 5Henry D. Geometric Theory of Semilinear Parabolic Differential Equations[M]. New York, Berlin:Springer-Verlag, 1981.
  • 6Hale J K. Asymptotic Behavior of Dissipative Systems[M]. Providence RI:Am Math Soc. 1988.
  • 7Stuart A M. Theory and Numerics of Ordinary and Partial Differential Equations[M]. Oxford: Oxford Univ Press, 1995.
  • 8Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics[ M]. New York: Springer-Verlag, 1988.
  • 9Harau S A. Attractors of asymptotically compact processes and applications to non-linear partial differential equations[J]. Comm Partial Differential Equations, 1988,13:1383 - 1414.
  • 10Chepyzhov V V, Vishik M I. Attractors af non-autonmous dynamical systems and their dirmension[J]. J Math Pures Appl.1994.73:279- 333.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部