摘要
以转子动力学和非线性动力学理论为基础 ,针对非线性弹性转子 -轴承系统的具体特点 ,用打靶法对采用短轴承模型的弹性转子 -轴承系统的周期解进行了求解 ,并用数值积分和庞加莱映射方法对其动力学特性随某一参数变化时稳定性的改变进行了分析 ,计算结果表明 ,系统具有发生倍周期分叉及概周期运动的可能。用数值方法得到系统在某些参数域中的分叉图 ,直观显示了系统在某些参数域中的运行状态。数值分析结果为该类转子
In allusion to the characteristics of a nonlinear rotor bearing system, the shooting is used to the periodic responses of a elastic rotor system using short bearing model. It is based on rotor dynamics and nonlinear dynamics theory with the Poincaré maps and numerical integral method along with the changing of some parameters in this paper. The result of calculation shows that may undergo the period doubling bifurcation and quasi periodic motions. In some typical parameter regions the bifurcation diagrams of the system are acquired with numerical integral method. They demonstrate some motion state of the system. The analysis result of this paper provides the theoretical reference for designing and safely operating of this system.
出处
《汽轮机技术》
北大核心
2002年第3期138-140,共3页
Turbine Technology