期刊文献+

存储约束条件下的序列联配算法 被引量:6

Sequences Alignment Algorithm with Memory Constraints
下载PDF
导出
摘要 序列联配算法是生物信息处理中非常重要的一类算法,最基本的序列联配算法是动态规划算法,其时间和空间复杂度都为O(m×n),(其中m和n为两序列的长度)。实际应用中,该算法的空间复杂度是限制问题规模的瓶颈。Hirschberg在1975年提出的算法减少了序列联配问题的空间需求,其空间复杂度为O(m+n),但是Hirschberg算法的时间需求是基本动态规划算法的两倍。文章提出一种新的序列联配算法FastAlignment(FA),FA算法的时间复杂度和空间复杂度介于基本动态规划算法和Hirschberg算法之间,通过对算法参数k的调节,可以获得在不同存储条件下最小序列联配问题解决时间。 Sequence alignment is one of the most important algorithm in bioinformatics. The first algorithm that result sequence alignment problem is dynamic programming algorithm. The dynamic programming algorithm's spatial and temporal requirement all are. In real application,the spatial requirement of dynamic programming is the bottleneck. Hirschberg algorithm reduce the spatial requirement from to comparing with dynamic programming algorithm, but doubles the cost of computing time. This paper introduce a new algorithm Fast Alignment(FA),its spatial and temporal requirement is between the dynamic programming algorithm and Hirschberg algorithm. Tuning the argument k of FA algorithm,the algorithm can get the best tradeoff between available memory and computing time.
出处 《微电子学与计算机》 CSCD 北大核心 2002年第6期1-5,共5页 Microelectronics & Computer
关键词 存储约束条件 序列联配算法 生物信息处理 Hirschberg算法 动态规划算法 线性空间 计算机 Bioinformatics, Sequence alignment, Hirschberg's algorithm, Dynamic programming, Line space
  • 相关文献

参考文献5

  • 1[1]D Hirschberg. A Linear Space Algorithm for Computing Maximal Common Subexpressions.Communication of ACM,1975,18(6):341~ 343.
  • 2[2]S Needleman and C Wunsch. A General Method Applicable to the Search for Similarities in the Amino Acid Sequences of Two Proteins. Journal of Molecular Biology,1970,48:443~ 453.
  • 3[3]T Smith and M Waterman. Identification of Common Molecular Sequences. Journal of Molecular Biology,1981,197:723~ 728.
  • 4[4]E Myers and W Miller. Optimal Alignments in Linear Space. Computer Applications in the Biosciences, 1988,4(1):11~ 17.
  • 5[5]K Chao,R Hardison,and W Miller. Recent Developments in Linear- space Alignment Methods:A Survey. Journal of computational biology,1994,1(4):271~ 291.

同被引文献36

  • 1陈宁涛,王能超,施保昌.生物多序列比对的并行算法[J].计算机应用与软件,2005,22(10):118-119. 被引量:2
  • 2詹超,胡江洪.SVM在基因表达数据分类中的研究和应用[J].计算机技术与发展,2006,16(3):107-109. 被引量:2
  • 3葛宏伟,梁艳春.基于隐马尔可夫模型和免疫粒子群优化的多序列比对算法[J].计算机研究与发展,2006,43(8):1330-1336. 被引量:9
  • 4Davic W Mount. Bioinformatics: Sequence and Genome Analysis[M]. USA: Cold Spring Harbor Laboratory Press, 2002, 53-54.
  • 5Needleman S, Wunsch C. A general method applicable to the search for similarities in the amino acid sequences of two proteins[J]. Journal of Molecular Biology, 1970, 48(3):443-453.
  • 6Hirschberg D. A linear space algorithm for conputing maximal common subsequences[J]. Comm ACM, 1975,18 (6) :341-343.
  • 7Hirschberg D. Serial Computations of Levenshtein Distances[M]. in: A. Apostolicl, Z. Galil (Eds.), Pattern Matching Algorithms, Oxford University Press, 1997, 123-141.
  • 8Ukkonen E. On approximate string matching[J]. Found Comput Theory, 1983, 158(6):487-495.
  • 9David R, Powell, Lloyd Allison, et al. A versatile divide and conquer technique for optimal string alignment[J]. Information Processing Letters, 1999, 70(3):127-139.
  • 10Hirschberg D. A linear space algorithm for computing maximal common subsequences [J].1975, 18(6):341-343.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部