期刊文献+

相场方法及其在晶体生长中的应用(英文) 被引量:6

Phase-field Method and Application in Crystal Growth
下载PDF
导出
摘要 相场方法已被发掘出用于直接求解含时的自由边界问题—著名的斯特藩方程。该方法作为晶体生长过程中模拟复杂图形成因的计算工具 ,已呈现出强有力的生命力。目前的研究在于努力发展精巧的计算技术 ,以便对于晶体生长和金属凝固过程进行理论模拟 ,而这些技术将有可能广泛地应用于工业流程。相场方法之所以具有吸引力 ,基于如下事实 :在计算机模拟过程中 ,既可避免对于边界的实时追踪 ,又不需要反复判别是否满足显式边界条件。在过去的 10年中 ,它已逐步被用于研究晶体生长的基础课题。诸如 :热质输运、晶体生长动力学、二维和三维枝晶生长、图形选择、生长形态和显微结构等。本文对相场方法进行评述 ,同时给出其最新应用结果。 The phase-field method has been explored to solve directly the full time-dependent free boundary problem described as well known Stefan equations and it has recently emerged as a viable computational tool for simulating formation of complex interfacial patterns in crystal growth. Recent research efforts have led to development of sophisticated computational techniques for modeling important dynamical processes in crystal growth and solidification. These techniques are applicable to the wide range of industrial processes. Its attractiveness is from the fact that explicit tracking of the interface and explicitly satisfying interfacial boundary conditions is completely avoided. In the past decade,the phase-field method has been used to study the fundamental subjects on crystal growth, such as the transport of heat and /or solute,the kinetics of crystal growth, the two and three dimensional dendritic growth,the pattern selection,the crystal morphology and microscopic structure etc.An overview of the phase-field method and somes new results for its application are given in this paper.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2002年第3期245-249,共5页 Journal of Synthetic Crystals
基金 国家科技部攀登计划 ( 95 预 34)资助项目
关键词 相场方法 晶体生长 应用 图像形成 斯特藩模型 枝晶生长 计算机民 phase field method crystal growth pattern formation Stefan model dendritic growth computational simulation
  • 相关文献

参考文献24

  • 1[1]Barbieri A,Langer J S.Predictions of Dendritic Growth Rates in the Linearized Solvability Theory.Physical Review A,1999,39(10):5314
  • 2[2]David Kessler A,Joel Koplik,Herbert Levine.Pattern Selection in Fingered Growth Phenomena.Advances in Physics,1988,37(3):255-339
  • 3[3]Alain Karma,Lee Y H,Mathis Plapp.Three-dimensional Dendrite-tip Morphology at Low Undercooling.Physical Review E,2000,61(4):3996
  • 4[4]Alain Karma,Wouter-Jan Rappel.Phase-field for Efficient Modeling of Solidification with Arbitrary Interface Kinetics.Physical Review E,1996,53(4):R3017
  • 5[5]Halperin B I,Hohenberg P C.Renormalization-group Methods for Critical Dynamics:Recursion Relations and Effects of Energy Conservation.Physical Review B,1974,10(1):139
  • 6[6]Wang S L,Sekerka R F,Wheeler A A,et al.Thermodynamically-consistent Phase-field Models for Solidification.Physica D,1993,69:189-200
  • 7[7]Alain Karma,Wouter-Jan Rappel.Quantitative Phase-flied Modeling of Dendritic Growth in Two and Three Dimensions.Physical Review E,1998,57(4):4323
  • 8[8]Caginalp G.Stefan Hele-Shaw Type Models as Asymptotic Limits of the Phase-field Equations.Physical Review A,1989,39(11):5887
  • 9[9]Caginalp P C,Xie W.Phase-field and Shapr-interface Alloy models.Physical Review E,1993,48(3):1897
  • 10[10]Wheeler A A,Murray B T,Schaefer R J.Computation of Dendrites using a Phase Field Model.Physica D,1993,66:243-262

同被引文献41

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部