摘要
用现代时间序列分析方法,基于ARMA新息模型和白噪声估计理论,提出了在Y可观典范型下广义系统的降阶Wiener状态估值器。它们可统一处理,滤波,平滑和预报问题且具有渐进稳定性。在计算上与非降阶的方法相比明显地减少了计算负担,同多项式方法相比避免了求解Diophantine方程。仿真例子说明了所提的理论和算法的有效性。
Using modern time series analysis method, based on the ARMA innovation model and white noise estimation theory. The reduced-order Wiener state estimators are presented for Descriptor system with Y-observable Canonical Form. They can handle the prediction, filtering, and smoothing problems in a unified framework and have a symptotic stability. Compared with non-reduced-order methods, the computational burden is obviously reduced, compared with the polynomial approach Diophantine equation is avoid. A simulation example shows its effectiveness.
出处
《黑龙江大学自然科学学报》
CAS
2002年第2期36-39,共4页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(69774019)
黑龙江省自然科学基金资助项目
关键词
广义系统
Y可观
降价
现代时间序列分析
Wiener状态估值器
Descriptor system
Y-observability
reduce-order
modern time series analysis method
Wiener state estimator