期刊文献+

基于蚂蚁网络的一种QoS选路新算法 被引量:1

A New Algorithm for QoS Routing Based on AntNet
下载PDF
导出
摘要 选路技术是保证网络QoS的一个重要因素。基于蚂蚁网络的QoS选路算法,来源于蚂蚁群落的生物行为特性。这种选路技术存在蚂蚁群数量过多、控制复杂的问题。文中提出了基于较大带宽的业务流呼叫驱动人工蚂蚁发射的新算法,以减少网络中蚂蚁的数量,并使用可后退的、智能型的选路算法,确保较高的呼叫成功率。 Routing technology is an important aspect to guarantee QoS of networks.The routing algorithm based on AntNet originates from biological behavior of ant colonies,but there are too many artificial ant colonies in networks and it is difficult to manage.This paper provides a new algorithm which emits artificial ants based on calls with the higher bandwidth requirement.The new algorithm can reduce the colonies of artificial ant and guarantee higher call success probability combined with a smart routing algorithm which can go back to the last node.
出处 《计算机工程与应用》 CSCD 北大核心 2002年第15期22-24,25,共4页 Computer Engineering and Applications
基金 国防科技"九五"预研项目
关键词 蚂蚁网络 QOS 选路新算法 服务质量 人工蚂蚁 计算机网络 Quality of service,Artificial ant ,QoS routing algorithm
  • 相关文献

参考文献7

  • 1[1]E Bonabeau,F Henaux,S Guerin et al. Routing in telecommunications networks with smart ant-like agents[J].Agent Word,1998
  • 2[2]E Bonabeau,G Theraulaz et al.Self organization in socialinsects.TREE, 1997;12
  • 3[3]R Braden,D Cvlark,S Shenker. Integrated service in the internet architecture:an overview[S].RFC 1633,1994
  • 4[4]R Schoonderwoerd,O Holland,J Bruten et al. Ant based load balanc ing in telecommunications networks[J].Adaptive Behavior, 1997;5: 169~207
  • 5[5]D Clark,S Shenker,L Zhang. Supporting real-time applications in an integrated services packet network:architecture and mechanism[C].In: Proc of ACM SIGCOMM,1992
  • 6[6]K Oida,M Seekido. ARS:an efficient agent-based routing system for QoS guarantees[J].Computer Communications,2000;23:1437~1447
  • 7[7]Onvural R.Asynchronous Transfer Mode Networks :Performance Issues [M].Boston :Artech House, 1994

同被引文献39

  • 1McMullen P R. An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives [ J]. Artificial Intelligence in Engineering, 2001,15(3) :309 -317.
  • 2Coksmi A, Dorigo M, Maniezzo V, et al. Ant system for jobshop scheduling [J]. Belgian Journal Operations Research Statistic Computation Science, 1994,34 (11) :39 - 53.
  • 3Maniezzo V, Carbonaro A. An ant heuristic for the frequency assignment problem [ J ]. Future Generation Computer System,2000,16(8) :927 -935.
  • 4Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies [ A]. Proceedings of the IEEE Conference on Evolutionary Computation [ C]. 1996. 622 -627.
  • 5Monarche N, Venturini G, Slimane M. On how pachycondylla apicalis ants suggests a new algorithm [ J ]. Future Generation Computer System, 2000,16 (8) :937 - 946.
  • 6Stutzle T, Hoos H H. MAX-MIN ant system [ J]. Future Generation Computer Systems, 2000,16 (8) :889 - 914.
  • 7Gambardella L M, Dorigo M. Ant-Q: a reinforcement learning approach to the traveling salesman problem [ A ]. Proceedings of the 12th International Conference on Machine Learning [ C ].Tahoe City, CA: Morgan Kaufman, 1995. 252 ~ 260.
  • 8Gutjahr W J. A graph-based ant system and its convergence [ J ].Future Generation Computer Systems, 2000, 16(8) :873 -888.
  • 9Lee Z J, Lee C Y, Su S F. An immunity-based ant colony optimization algorithm for solving weapon-target assignment problem [J]. Applied Soft Computing, 2002, 2(10) :39 -47.
  • 10Colomi A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [ A]. Prooeedings of ECAL 91 - European Conference on Artificial Life [C]. Paris, France:1991. 134 - 142.

引证文献1

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部