期刊文献+

颗粒性甲烷单加氧酶的电子供体研究 被引量:3

Study on the Electron Donors for Particulate Monooxygenase
原文传递
导出
摘要 从甲基弯菌 Methylosinus trichosporium IMV 30 11的膜中分离出颗粒性甲烷单加氧酶 (Particulate MMO,p MMO)和 NADH脱氢酶 .只有当两者同时存在、并添加去垢剂解离膜组分时 ,NADH才能为 p MMO提供还原当量 .对苯二酚能够在整细胞和膜水平代替 NADH作为 p MMO的电子供体 .对于纯化的 p MMO,对苯二酚仍是有效的电子供体 ,而 NADH却是无效的电子供体 .在 NADH脱氢酶存在下 ,NADH可将对苯醌还原为对苯二酚 .纯化过程中 ,采用对苯二酚作为 p MMO活性分析时的电子供体 ,不必共纯化 NADH脱氢酶 ,且有利于对p Particulate Monooxygenase (pMMO) and NADH-dehydrogenase were purified from membranes of the methane-oxidizing bacterium Methylosinus trichosporium IMV 3011. NADH can provide reducing equivalents for pMMO only in the presence of these two enzymes and the membrane fraction solubilized by the detergent. Quinol is an effective exogenous electron donor for pMMO, substituting for NADH in whole cells and membranes. Furthermore, quinol is an effective exogenous electron donor also for the purified pMMO, whereas NADH is ineffective. Quinone can be reduced to quinol by NADH in the presence of NADH-dehydrogenase. The use of quinol to assay pMMO activity during purification could eliminate the need to copurify the additional NADH-dehydrogenase and facilitate the further study on the catalytic core of pMMO.
出处 《分子催化》 EI CAS CSCD 北大核心 2002年第3期161-165,共5页 Journal of Molecular Catalysis(China)
基金 国家自然科学基金重点项目 ( 2 99330 40 ) 国家重点基础研究规划项目
关键词 颗粒性甲烷单加氧酶 纯化 电子供体 对苯二酚 NADH 脱氢酶 甲烷 分离 甲基弯菌 催化氢化 Particulate monooxygenase Purification Electron donor Quinol NADH
  • 相关文献

参考文献8

  • 1[1]Murrell J C, McDonald I R, Gilbert B. Regulation of Expression of Monooxygenases by Copper Ions[J]. Tren Microb, 2000, 8(5):221~225
  • 2[2]Westerheide L, Pascaly M, Krebs B. Methane Monooxygenase and its Related Biomimetic Models[J]. Cur Opin Chem Biol, 2000, 4:235~241
  • 3[3]Fontecave M, Me′nage S, Duboc-Toia C. Functional Models of Non-heme Diiron Enzymes[J]. Coord Chem Rev, 1998, 178~180, 1 555~1 572
  • 4[4]Kazunari Yoshizawa. Two-step Concerted Mechanism for Methane Hydroxylation on the Diiron Active Site of Soluble Methane Monooxygenase[J]. J Inorg Biochem, 2000, 78:23~34
  • 5[5]Tonge G M, Harrison D E F, Higgins I J. Purification and Properties of Methane Monooxygenase Enzyme System from Methylosinustrichosporium OB3b[J]. Biochem J, 1977, 161:333~334
  • 6[6]Yuan H, Collins M L P, Antholine W E. Concentration of Cu, EPR-detectable Cu, and Formation of Cupricferrocyanide in Membranes with pMMO[J]. J Inorg Biochem, 1998, 72:179~185
  • 7[7]Takeguchi M, Miyakawa K, Okura I. The Role of Copper in Particulate Methane Monooxygenase from Methylosinustrichosporium OB3b[J]. J Mol Catal A, 1999, 137:161~168
  • 8[8]Takeguchi M, Okura I. Effect of Bovine Serum Albumin on Particulate Methane Monooxygenase from Methylosinustrichosporium OB3b[J]. J Mol Catal A, 1999, 145:45~50

同被引文献39

  • 1范建军,姜文峰,陈荣芳.电石渣应用工艺的改进[J].氯碱工业,2005,41(4):34-34. 被引量:1
  • 2Jia-Ying Xin,Jun-Ru Cui,Li-Min Zhu,Jian-Bo Chen,Chun-Gu Xia,Shu-Ben Li. Epoxypropane biosynthesis by Methylomonas sp. GYJ3: batch and continuous studies[J] 2002,World Journal of Microbiology and Biotechnology(7):609~614
  • 3Masayuki Takeguchi,Ichiro Okura. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b[J] 2000,Catalysis Surveys from Japan(1):51~63
  • 4Jean-Pierre Arcangeli,Erik Arvin. Modelling the growth of a methanotrophic biofilm: Estimation of parameters and variability[J] 1999,Biodegradation(3):177~191
  • 5Jeewon Lee,Bhupendra K. Soni,Robert L. Kelley. Cell growth and oxygen transfer in Methylosinus trichosporium OB3b cultures[J] 1996,Biotechnology Letters(8):903~908
  • 6Ayala M,Torres E. Enzymatic activation of alkanes:constrains and prospective[J].Appl Catalysis A Gen,2004.1-13.
  • 7Torres D E,Winkler M,Glieder A. Monooxygenases as biocatalysts:Classification,mechanistic aspects and biotechno-logical applications[J].{H}Journal of Biotechnology,2010.9-24.
  • 8Lieberman R L,Rosenzweig A C. Biological methane oxida- tion:regulation,biochemistry,and active site structure of partic-ulate methane monooxygenase[J].{H}Critical Reviews in Biochemistry and Molecular Biology,2004.147-164.
  • 9Miyaji A,Suzuki M,Bada T. Hydrogen peroxide as an effecter on the inactivation of particulate methane monooxygen-ase under aerobic conditions[J].J Mol Catalysis B Enzymatic,2009.211-215.
  • 10Ha D,Bundervoet B,Verstrate W. A sustainable,car-bon neutral methane oxidation by a partnership of methane ox-idizing communities and microalgae[J].{H}Water Research,2011.2845-2854.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部