期刊文献+

电液伺服协调加载系统特性分析及其自适应统一预测控制策略的试验研究 被引量:6

Research on Electrohydraulic Servo Harmony Loading System and Adapive Unified Predictive Control
下载PDF
导出
摘要 首先分析了电液伺服协调加载系统的特性 ,针对多通道加载系统特点 ,将其转化为多个带干扰的单变量系统 ,并建立数学模型 ;提出一种自适应统一预测控制策略应用于加载系统 ,试验结果表明 ,该算法有效地克服了系统时变、干扰等未知影响 ,有较高的控制精度和较强的鲁棒性 ,该算法对一般不确定系统具有借鉴作用。 Specific character of the electrohydraulic servo harmony loading system is analyzed firstly. Based on the analysis, the multi-channel loading system is transformed into several SISO single input single output systems and a mathematical model is built. Then an adaptive unified predictive control scheme is brought forward. Test results show that the scheme can overcome time variation and unknown disturbance, and has high precision and robustness.
作者 曹阳 李天石
出处 《机械科学与技术》 CSCD 北大核心 2002年第4期620-622,共3页 Mechanical Science and Technology for Aerospace Engineering
关键词 电液伺服协调加载系统 不确定系统 扰动 自适应 统一预测控制 Electrohydraulic servo harmony loading system Unknown disturbance Unified predictive control
  • 相关文献

参考文献5

  • 1Lim K W,Ho W K,Lee T H,et al.Generalized predictive controller with pole restrictive[].IEEE Proc -D.1998
  • 2Lee S R,Srinivasan K.Self -turning control application to closed-loop servohydraulic material testing[].J of Dynamic System Measurement and Control.1990
  • 3H. A. B. te Braake,M. Ayala Botto,et al.Linear predictive control based on approximate input -output feedback linearisation[]..1999
  • 4Garcia C E,Prett D M,Morari M.Model predictive control : Theory and practice a survey[].Automatica.1989
  • 5Ramachandran S,Dranstield P.Interaction in a 2-channel loaded electro-hydraulic drive[].The Journal of Fluid Control.1982

同被引文献32

  • 1FengDING TongwenCHEN.Modeling and Identification of Multirate Systems[J].自动化学报,2005,31(1):105-122. 被引量:35
  • 2SMOLA A J, SCHOLKOPF B. A tutorial on support vector regression [J]. Statistics and Computing, 2004, 14: 199-222.
  • 3SI Fengqi, ROMERO C E, YAO Zheng, et al. A new approach for function approximation in boiler combustion optimization based on modified structural AOSVR [J]. Expert Systems with Applications, 2009, 36(4): 8691-8704.
  • 4ZHANG Haoran, WANG Xiaodong, ZHANG Changjiang, et al. Using least square SVM for nonlin- ear systems modeling and control [J]. Asian Journal of Control, 2007, 9(2): 215-220.
  • 5ZHAN Y, CHENG H Z. A robust support vector algorithm for harmonic and interharmonic analysis of electric power system[J]. Electric Power Systems Research, 2005, 73(3): 393-400.
  • 6HASTIE T, ROSSET S, TIBSHIRANI R, et al. The entire regularization path for the support vector machine [J]. Journal of Machine Learning Research, 2004(5) : 1391-1415.
  • 7MA Junshui, THEILER J, PERKINS S. Accurate on -line support vector regression [J]. Neural Computation, 2003, 15(11): 2683-2703.
  • 8VAPNIK V N, GOLOWICH S E, SMOLA A. Support vector method for function approximation regression estimation and signal processing [C]//MOZER M C. Advances in Neural Information Processing Systems: 9. Cambridge, MA, USA: MIT Press, 1997: 281-287.
  • 9SHENG Jie, CHEN Tongwen, SHAH S L. Generalized predictive control for non-uniformly sampled systems [J]. Journal of Process Control, 2002, 12(8): 875-885.
  • 10DING Feng, QIU Li, CHEN Tongwen. Reconstruc- tion of continuous-time systems from their non-uni- formly sampled discrete-time systems [J]. Automati- ca, 2009, 45(2): 324-332.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部