期刊文献+

基于概念的文档评价模型 被引量:4

A Concept-based Document Evaluation Model
下载PDF
导出
摘要 理解文档的内容和查询的真实意图是提高搜索引擎智能水平的一种有效途径。提出了一种以分析概念及其关系为基础来理解文档、揣摩查询意图的模型。在该模型中,结合用户背景知识构造一个用户概念库,将文档及查询要求转化为概念集,并适当扩充查询要求概念集,最后将两概念集转化为特征向量,计算其相似度,作为文档的评价值。文中详细给出了概念库及必需的概念运算的数学模型。 There exists an obstacle in understanding the retrieval document and in comprehending the request, whose being overcome would effectively improve the search engines performance. This paper presents a concept-based mathematical model to tackle this problem.It includes the concept hierarchy and some concept operations. Based on them, gives a document evaluation schema involving thefollowing stepsas construct a concept base specific to the requester whose background knowledge, his or her interest points, is included, evolve the concept sets from the document and the request and expand the latter one to explicate some hints, translate the sets into two corresponding feature vectors referring the concept relations, evaluat the similarity between them and the degree, the document fulfills the request. In order to implement the schema, it also takes efforts on some basic concept operations.
出处 《计算机工程》 CAS CSCD 北大核心 2002年第8期79-80,283,共3页 Computer Engineering
基金 香港Research on lnternet Reliable Multicast Protocol (7000765)
关键词 概念 文档评价模型 搜索引擎 概念库 INTERNET Document evaluation Document feature Retrieval intention Search engine Concept base
  • 相关文献

参考文献6

二级参考文献5

共引文献169

同被引文献34

  • 1金博,史彦军,滕弘飞.基于语义理解的文本相似度算法[J].大连理工大学学报,2005,45(2):291-297. 被引量:80
  • 2吴健,吴朝晖,李莹,邓水光.基于本体论和词汇语义相似度的Web服务发现[J].计算机学报,2005,28(4):595-602. 被引量:218
  • 3沙莎,曾慧宏,罗三定.一种面向元数据描述文档的概念检索方法[J].计算机工程与应用,2005,41(25):168-171. 被引量:2
  • 4章成志.基于多层特征的字符串相似度计算模型[J].情报学报,2005,24(6):696-701. 被引量:40
  • 5Lewis D D. Naive (Bayes) at forty: The independence assumption in information retrieval. In Machine Leandng: Tenth European Conference on Machine Learning (ECML-98). Chemnitz,DE, 1998: 4-15.
  • 6Apte C, Damerau J F, Weiss S. Automated learning of decision rules for text categorization. ACM Transactions on Information System, 1994, 12, (3): 233-251.
  • 7G.W.Fumas, T.K.Landauer, L.M.Gomez, et al. The Vocabulary Problem in Human-System Communication. Cotmnunlcations of the ACM, 1987, 30, (11): 964-971.
  • 8Yang Y. Expert network: Effective and efficient learning from human decisions in text categorization and retrieval. In: Proc of the Seventeenth Int'l ACM SIGIR Conf on Research and Development in Information Retrieval. Dublin, 1994: 13-22.
  • 9Lewis D D, Sehapore R E, Callan,J P, et al. Tmining algorithms for linear text classifiers. In: Proceeding of the Nineteenth Int'l ACM SIGIR Conf on Research and Developmnet in Information Retrieval. Zurich, 1996: 298-306.
  • 10Cohen W W, Singer Y. Context-sensitive learning methods for text categorization. In:Proceeding of the 19th Int'l ACM SIGIR Conf on Research and Develpment in Information Retrieval.Zurich, 1996: 307-315.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部