期刊文献+

多小波与平衡多小波的理论和设计 被引量:23

Theory and Design of Multiwavelet and Balanced Multiwavelet
下载PDF
导出
摘要 多小波成为研究的热点 ,部分原因是因为它可同时拥有正交对称和紧支撑性质。然而在应用于实际进行离散多小波变换的实现时 ,必须对它进行具体的预滤波 ,这一过程有时会破坏所设计的多小波已有的重要性质。为弥补这一缺陷 ,平衡多小波被引入 ,这种多小波在进行信号处理时可以不需要进行预滤波 ,且显示良好的应用前景。为了更好的理解和应用它 ,本文对平衡多小波理论研究予以综述 ,并展望它今后的发展。 Multiwavelets becames a focus of research partly because they made possible the construction of wavelet systems that are simultaneously orthogonal, symmetric, and compactly supported, which is not possible for any real valued scalar wavelets. However, it became clear that the implementation of the discrete multiwavelet transform required the design of specialized prefilters, which sometimes destroys the very properties a multiwavelet is designed to have. Recently, a new subclass of balanced multiwavelet needing no prefiltering procedure has been proposed and have show better prospects in application. In order to understand and applied it moer better, we review the theory and design of balanced multiwavelet, and point out some interesting issues in future ressearch.
出处 《工程数学学报》 CSCD 北大核心 2001年第F12期105-116,共12页 Chinese Journal of Engineering Mathematics
  • 相关文献

参考文献2

二级参考文献14

  • 1Chui C. K., An Introduction to Wavelets, Bostan: Academic Press, 1992.
  • 2Daubechies I., Orthonornal bases of compactly supported wavelets, Comm. Pure and Appl. Math., 1988, 41:909--996.
  • 3Franklin P., A set of continuous orthogonal functions, Math. Ann., 1928, 100: 522-529.
  • 4Meyer Y., Ondelettes sur l'intervalle, Rev. Mat. Iberoamericana, 1991, 7: 115-143.
  • 5Chui C. K., Quak E., Wavelets on a Bounded Interval, In "Numerical Methods of Approximation Theory"(Braess D. and Schumaker L. L. eds.), Basel: Birkhauser-Verlag, 1992, 53-75.
  • 6Micchelli C. A., Xu Y., Using the matrix refinement equation for the construction of wavelets on invariant sets, Appl. Comp. Harmonic Anal., 1994, 1: 391-401.
  • 7Micchelli C. A., Xu Y., Reconstruction and decomposition algorithms for biorthogonal multiwavelets, Multidimensional Systems and Signal Processing, 1997, 8: 31-67.
  • 8Goodman T. N. T., Lee S. L., Wavelets of multiplicity r, Trans. Amer. Math. Soc., 1994, 342: 307-324.
  • 9Chui C. K., Lian J. A., A study of orthonormal multi-wavelets, J. Appl. Numer. Math., 1996, 20: 272-298.
  • 10Chen Z., Micchelli C. A., Xu Y., A construction of interpolating wavelets on invariant sets, Math. Comp.,1999, 68: 1569-1587.

共引文献17

同被引文献164

引证文献23

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部