摘要
设A为复Banach空间X上的稠定闭算子.我们证明了若抽象柯西问题具有C-适定性,则{λ∈C:Reλ≥0) ρ(A)且存在C>0,使得任给λ∈C,Reλ≥0,都有(λ-A)-1≤C/1+ λ.因而A必为X上某一有界解析半群的无穷小生成元.对于定义在有限区间[0,T]上的抽象柯西问题,我们亦得到了类似的结果.
Let A be a linear closed densely defined operator on a complex Banach space X. We show that if the abstract Cauchy problemhas the C-maximal regularity, then {λ∈C: Reλ≥0} p(A) and there exists C > 0 such that for every λ∈C, Reλ≥0, we have ||(λ-A)-1||≤C/1+||λ||.A thus generates a bounded analytic semigroup in X. Similar results for the abstract Cauchy problem on a bounded interval [0, T] are also given.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2002年第4期625-630,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目
关键词
适定性
解析半群
柯西问题
Maximal regularity
Analytic semigroups
Cauchy problems