期刊文献+

从复流形到对称空间的多重调和映射

Pluriharmonic Maps from Complex Manifolds Into Symmetric Spaces
原文传递
导出
摘要 本文首先证明了从复流形到对称空间的多重调和映射空间与扩张提升空间之间在相差一规范变换下存在一一对应,并给出确定的环路群在扩张提升空间的作用,因而也给出多重调和映射空间上的作用.其次,利用环路群及其代数的Iwasawa分解给出从Cn到对称空间的有限型的多重调和映射不同于文[1]中的刻划. In this paper, we prove that there exists a one to one correspondence between the space of pluriharmonic maps from complex manifold into symmetric spaces and the space of extended lifts up to a gauge transformation. And we determine the action of certain loop group on the space of extended lifts. So we give the action of space of pluriharmonic maps from complex manifold into symmetric spaces. We also give a description of finite type pluiharmonic maps from Cn into symmetric spaces by using the Iwasawa decompositions of loop groups and their loop algebras, which is different from that of [1].
机构地区 浙江大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第4期661-670,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(19531050)
关键词 多重调和映射 扩张提升 对称群 有限型多重调和映射 Pluriharmonic map Extended lift Symmetric group Finite type plurihar-monic map
  • 相关文献

参考文献10

  • 1Burstall F. E., Ferus P., Pedit F., Pinkall U., Harmonic tori in symmetric spaces and commuting Hamilton systems on loop algebras, Ann. of Math., 1993, 138(2): 73-212.
  • 2Burstall F. E., Pedit F., "Harmonic maps via Adler-Kostant-Symes theory", in harmonic maps and interable systems ed. By Fordy A. P. and Wood J. C. Aspects of Math. 23, Vieweg, Braunschweg, 1994, 221-272.
  • 3Guest M. A., Harmonic Maps, Loop Groups and Integrable System, London Mat. Soc., Student text, 38,Cambridge, 1997.
  • 4Dorfmeister J., Pedit F., Wu H., Weiersterass type repressntation of harmonic maps into symmetric spaces,Comm. Anal. Geom., 1997, 6B(4): 453-456.
  • 5Ohnita Y., Valli G., Pluriharmonic maps into complex Lie groups and factorization into unitons, Proc. London Math. Soc., 1990, 61: 546-570.
  • 6Cheeger J., Ebin D., Comparison Theorems in Riemannian Geometry, Norty Holland, Arnsterdan, 1975.
  • 7Kobayashi S., On compact Kahler manifolds with positive Ricci tensor, Ann. of Math., 1961, 74: 507-514.
  • 8Burstall F. E., Pedit F., Dressing orbits of harmonic, Duke Math. J., 1995, 80(2): 353-383.
  • 9Pressley A. N., Segal G., Loop Groups Oxford Math. Monographs, New York: Oxford Univ. Press, 1986.
  • 10Uhlenbeck K., Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom., 1989,30: 1-50.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部