期刊文献+

一类具有平行平均曲率和有限全曲率的完备子流形

Some Complete Submanifolds with Parallel Mean Curvature and Finite Total Curvature
原文传递
导出
摘要 本文把Berard P.,do Carmo M.,Santos W.在1998年所得的结果,分别推广到局部对称的Cartan-Hadamard流形中具有常平均曲率和有限全曲率的完备超曲面,以及球面上具有平行平均曲率和有限全曲率的完备子流形. In this paper, we advanced the result obtained by Berard P., do Carmo M., Santos W. to the complete non-compact orientable hypersurface in a locally symmetric Riemannian manifold with constant mean curvature and finite total curvature, and also to the complete submanifold in a sphere with parallel mean curvature and finite total curvature.
作者 王一令
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第4期719-730,共12页 Acta Mathematica Sinica:Chinese Series
基金 上海市重点学科建设基金资助项目
关键词 局部对称 无迹第二基本形式 有限全曲率 locally symmetric Traceless second fundamental form Finite total curvature
  • 相关文献

参考文献8

  • 1Shen Yibing, Zhu xiaohua, On stable complete minimal hypersurfaces in Rn+1, Amer. J. Math., 1998, 120(1):103-116.
  • 2Bérard P., do Carmo M., Santos W., Complete hypersurfacewithconstant mean curvature and finite total curvature, Ann. Global Anal. Geom., 1998, 16(3): 273-290.
  • 3Bérard P., Remarques sur I'equation de Simons J., Differential Geometry (A Symposium in Honour of do Carmo D. on His 60th Birthday), Pitman Monographs Surveys Pure Appl. Math., Longman Sci. Tech.,Harlow, 1991, 52: 47-57.
  • 4Hu Zejun, Li Haizhong, Complete Submanifolds with Parallel Mean Curvature and Finite Total Curvature,Preprint.
  • 5Hoffman D., Spruck J., Sobolev and isoperimetric inequalities for riemann submanifolds, Comm. Pure Appl.Math., 1974, 27(5): 715-727.
  • 6Santos W., Submanifolds with parallel mean curvature vector in spheres, Tohoku Math. J., 1994, 46(3):403-415.
  • 7Li Anmin, Li Jimin, An instrinsic rigidity theorem for minimal submanifolds in sphere, Arch. Math., 1992,58(6): 582-594.
  • 8Katsuhioro Shiharma, Xu H. W., A general rigidity theorem for complete submanifolds, Nagoya Math. J.,1998, 150: 105-134.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部