期刊文献+

R^N上临界增长的椭圆方程无穷多解的存在性 被引量:3

Existence of Infinitely Many Solutions on a Class of Elliptic Equations in R_N
原文传递
导出
摘要 本文证明了RN上的拟线性椭圆型方程-div(|Du|p-2Du)+|u|p-2u=λ(x)·|u|α-2u+a(x)|u|s-2u+b(x)|u|p*-2u在W1,p(RN)中无穷多解的存在性,其中N≥3,2≤p<N,1<α<p<s<p*=Np/N-p. This paper gives the result of existence of infinitely many solutions on quasi-linear elliptic equation -div[|Du|p-2Du] +|u|p-2u=λ(x)|u|α-2u+a(x)|u|s-2u+a(x)|u|p*-2u in W1,P(RN), where N≥3, 2≤p<N, 1<α<p<s<p* =Np/N-p.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第4期773-782,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(19531060)
关键词 拟线性椭圆型方程 集中紧性原理 亏格 弱解 Quasilinear elliptic equations Concentration-compactness principle Genus Infinitely many solutions
  • 相关文献

参考文献1

同被引文献17

  • 1STRUWE M.Variational Methods:第2版[M].New York: Spriger-Verlag,1996..
  • 2AZORERO J P G, ALONSO I P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[J]. Tram Amer Math Soc, 1991,323(2) :877 - 895.
  • 3YANG J F, ZHU X P. The quasilinear elliptic equation on unbounded domain involving critical Sobolev exponent[J].J Part Diff Eqns, 1989, 2(2) :53 - 64.
  • 4LION P L. The concentration- compacmess principle in the calculus of Variation,the limit ease, part 1[J]. Rev Mat Iberoamericana, 1985( 1 ) : 145 - 201.
  • 5LION P L. The concentration- compactness principle in the calculus of Variation,the limit case, part 2[J]. Rev Mat Iberoamericana, 1985(2) :45 - 121.
  • 6STRUWEM.Variational Methods[M](第2版)[M].New York: Spriser- Verlag,1996..
  • 7朱熹平.临界增长拟线性椭圆型方程非平凡解[J].中国科学:A辑,1988,(3):225-237.
  • 8Lion P L. The concentration-compactness principle in the calculus of Variation, the limit case[ J]. part 1,2. Rev Mat Iberoamericana, 1985,1(1) : 145-201 ;1(2) :45-121.
  • 9Costa D G, Miyagaki O H. Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains[ J]. J Math Anal Appl, 1995,193(2) :737-755.
  • 10Brezis H,Nirenberg L. Remarks on finding critical points[J]. Comm Pure Appl Math, 1991,49(5) : 939-963.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部