摘要
设A为B(H)的子代数, 是A到B(H)的线性映射,我们说 在0点广义可导(广义双边可导),如果对任意的S,T∈A且ST=0(ST=0或TS=0),有 (ST)= (S)T+S (T)-S (I)T.本文主要得到如下结果:(1)有限Nest代数上的每个范数拓扑连续的在0点广义可导的线性映射是广义内导子;(2)若N是完备Nest且H_ H,则algN上的每个范数拓扑连续的在0点广义双边可导的线性映射是广义内导子.
Let A be a subalgebra of B(H), we say that a linear mapping : A→B(H) is a generalized derivable (generalized biderivable) at the point zero if (ST) = (S)T+ S (T) - S(I)T for any S, T ∈ A with ST = 0 (ST = 0 or TS = 0). In this paper, we obtain the following results: (1) Every norm-continuous linear mapping of generalized derivable at the point zero on finite nest algebras is a generalized inner derivation; (2) Let N be a complete nest with H_ H, then every norm-continuous linear mapping of generalized biderivable at the point zero on the nest algebra alg N is a generalized inner derivation.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2002年第4期783-788,共6页
Acta Mathematica Sinica:Chinese Series
基金
湖北省自然科学基金资助项目
湖北省教委高校重点科研基金资助项目
关键词
NEST代数
广义内导子
在0点广义可导映射
在0点广义双边可导映射
核值保持映射
Nest algebra
Generalized inner derivation
Generalized derivable mapping at the point zero
Generalized biderivable at the point zero
Mapping of preserving kernel into range