期刊文献+

凸体的曲率映象与仿射表面积 被引量:4

Affine Surface Areas of Curvature Images for Convex Bodies
原文传递
导出
摘要 本文研究了一些特殊凸体与其极体的曲率仿射表面积乘积的下界.对任意两个凸体,建立了它们的投影体的混合体积与其仿射表面积的一个不等式(见文[1-15]). In this paper, we give a lower bound of the volume product for simplices, and prove that the Santalo point of a simplex is identical with its centroid. Some inequalities have been established for the affine surface areas of the curvature images of simplices, zonoid and centrally symmetric convex bodies. Further, we prove an inequality for the mixed volumes and surface areas of projection bodies (see [1-15]).
作者 冷岗松
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第4期797-802,共6页 Acta Mathematica Sinica:Chinese Series
基金 中国博士后基金资助项目 上海市教委发展基金资助项目
关键词 凸体 曲率映象 仿射表面积 混合体积 不等式 Convex bodies Curvature images Surface areas Mixed volumes Inequalities
  • 相关文献

参考文献15

  • 1Alexander R., Zonoid theory and Hilbert's fourth problem, Geom. Dedicata, 1988, 28: 199-211.
  • 2Ball K. M., Shadows of convex bodies, Trans. Amer. Math. Soc., 1991, 327: 891-901.
  • 3Bourgain J., Milman V., New volume ratio properties for convex symmetric bodies in Rn, Ivent. Math., 1987,88: 319-340.
  • 4Brannen N. S., Volumes of projection bodies, Mathematika, 1996, 43: 255-264.
  • 5Gordon Y., Meyer M., Reiser S., Zonoids with minimal volume product-a new proof, Proc. Amer. Math.Soc., 1988, 104: 273-276.
  • 6Guggenheimer H., Applicable Geometry, Geometry, Global and Local Convexity, R. E. Krieger, Huntington,NY 1997.
  • 7Kaiser M. J., The lower bound for the volume product Vn(K)Vn(K*), Appl. Math. Lett., 1994, 7: 1-5.
  • 8Lutwak E., On some affine isoperimetricc inequalities, J. Differential Geom., 1986, 23: 1-13.
  • 9Lutwak E., Volume of mixed bodies, Trans. Amer. Math. Soc., 1986, 294: 487-500.
  • 10Lutwak E., Extended affine surface area, Adv. Math., 1991, 85: 39-68.

同被引文献34

  • 1Wei Dong WANG,Gang Song LENG.The Petty Projection Inequality for L_p-Mixed Projection Bodies[J].Acta Mathematica Sinica,English Series,2007,23(8):1485-1494. 被引量:12
  • 2Schneider. R. Convex Bodies. The Brurm-Minkowski theory[M]. Cambridge Univ. Press, Cambridge, 1993.
  • 3Lutwak E. Dual mixed volume[J]. Pacific J. Math. , 1975,58:531-538.
  • 4Gardner R. J. Geometric tomography[M]. New York:Cambridge Univ. Press,1995.
  • 5Firey W.J. p-means of convexboclies[J]. Math. Scand. , 1962,10: 17-24.
  • 6Lutwak E. The Rrunn-Minkowski-Firey theory I:Mixed volumes and the Minkowski problem[J]. J.Differential Geom, 1993,38 : 131-150.
  • 7Lutwak E. Intersection bodies and daul mixed volumes[J]. Adv. Math. , 1988,71:232-261.
  • 8Busemann H. Convex surfaces[M]. New York: Interscience,1958.
  • 9Gardner R.J.,Geometric Tomography[M],Cambridge:Cambridge Univ.Press,1995.
  • 10Hardy G.H.,Littlewood J.E.and Pólya G.,Inequalities[M],Cambridge:Cambridge University Press,1959.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部