摘要
本文研究了一些特殊凸体与其极体的曲率仿射表面积乘积的下界.对任意两个凸体,建立了它们的投影体的混合体积与其仿射表面积的一个不等式(见文[1-15]).
In this paper, we give a lower bound of the volume product for simplices, and prove that the Santalo point of a simplex is identical with its centroid. Some inequalities have been established for the affine surface areas of the curvature images of simplices, zonoid and centrally symmetric convex bodies. Further, we prove an inequality for the mixed volumes and surface areas of projection bodies (see [1-15]).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2002年第4期797-802,共6页
Acta Mathematica Sinica:Chinese Series
基金
中国博士后基金资助项目
上海市教委发展基金资助项目
关键词
凸体
曲率映象
仿射表面积
混合体积
不等式
Convex bodies
Curvature images
Surface areas
Mixed volumes
Inequalities