期刊文献+

用群方法求解幂律非牛顿导电流体的Rayleigh问题 被引量:1

Solution of the Rayleigh Problem for a Power-Law Non-Newtonian Conducting Fluid via Group Method
下载PDF
导出
摘要 研究了如下磁流体Rayleigh问题 :一块半无限大平板受瞬态冲击后以恒定速度在无限大非牛顿幂律流体的区域内运动· 讨论了在横向外在磁场作用下非牛顿导电流体在无限大区域内的非定常流动· 用变换群理论得到了这个强非线性问题的解· 通过单参数群变换减少了一个自变量 。 An investigation is made of the magnetic Rayleigh problem where a semi_infinite plate is given an impulsive motion and thereafter moves with constant velocity in a non_Newtonian power law fluid of infinite extent. The solution of this highly non_linear problem is obtained by means of the transformation group theoretic approach. The one_parameter group transformation reduces the number of independent variables by one and the governing partial differential equation with the boundary conditions reduce to an ordinary differential equation with the appropriate boundary conditions. Effect of the some parameters on the velocity u(y,t) has been studied and the results are plotted.
出处 《应用数学和力学》 EI CSCD 北大核心 2002年第6期569-575,共7页 Applied Mathematics and Mechanics
关键词 Rayleigh问题 群方法 非线性 导电流体 非牛顿幂律流体 Rayleigh problem group method non_linearity conducting fluid non_Newtonian power law fluid
  • 相关文献

参考文献4

  • 1Y. Z. Boutros,M. B. Abd-el-Malek,I. A. El-Awadi,S. M. A. El-Mansi. Group method for temperature analysis of thermally stagnant lakes[J] 1999,Acta Mechanica(1-4):131~144
  • 2M. B. Abd-El-Malek,Y. Z. Boutros,N. A. Badran. Group method analysis of unsteady free-convective laminar boundary-layer flow on a nonisothermal vertical flat plate[J] 1990,Journal of Engineering Mathematics(4):343~368
  • 3M. B. Abd-el-Malek,N. A. Badran. Group method analysis of unsteady free-convective laminar boundary-layer flow on a nonisothermal vertical circular cylinder[J] 1990,Acta Mechanica(3-4):193~206
  • 4Dr. B. Vujanovic,Dr. A. M. Strauss,Dr. Dj. Djuki?. A variational solution of the Rayleigh problem for a power law non-Newtonian conducting fluid[J] 1972,Ingenieur - Archiv(6):381~386

同被引文献19

  • 1Dowson D. A generalized Reynolds equation for fluid-ffim lubrication[J] International Jour- nal of Mechanical Science, 1962, 4(2): 159-170.
  • 2Buckholz R. On the role of a non-Newtonian fluid in short journal bearing theory[J]. Journal of Tribology, 1985, 107(1) : 68-74.
  • 3Dien I, Elrod H. A generalized steady-state Reynolds equation for non-Newtonian fluids, with application to journal bearings [J]. Journal of Lubrication Technology, 1983, 105 ( 3 ) : 385- 390.
  • 4Buekholz R. Effects of power-law non-Newtonian lubricants on load capacity and friction for plane slider bearings[J].Journal of Tribology, 1986,1118(1) : 86-91.
  • 5Johnson M, Mangkoesoebroto S.Analysis of lubrication theory for power law fluid[ J]. Jour- nal of Tribology, 1993, 115(1) : 71-77.
  • 6IAn J, Teng M, Ho M. Effects of non-Newtonian rheology on the film-height history betweennon-parallel sliding- squeezing surfaces [ J ]. Journal of Engineering Tribology, 2007, 221 (2) : 155-159.
  • 7Tichy J. Hydrodynamic lubrication theory for the Bingham plastic flow model[ J ]. Journal of Rheology, 1991, 35(4): 477-496.
  • 8Jang J, Khonsari M. Performance analysis of grease-lubricated jom:nal bearings including ther- mal effects[J]. Journal of Tribology, 1997, 119(4) : 859-868.
  • 9Yoo J, Kim K. Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the Herschel-Bulkley model[J]. Tribology International, 1997, 30(6) : 401-408.
  • 10Zhang J, Khayat R, Noronha A. Three-dimensional lubrication flow of a Herschel-Bulkley flu- id[J] International Journal for Numerical Methods in Fluids, 2006, 50 (4) : 511-530.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部