期刊文献+

基于2-D模型的人体运动跟踪 被引量:3

2-D Model Based Tracking of Human Motion
下载PDF
导出
摘要 人体运动跟踪是图象处理和计算机视觉研究的热点问题 .它在人机接口、虚拟现实、智能监控、机器人仿真等方面具有广阔应用前景 ,已引起越来越多学者的关注 .为了实现准确的人体运动跟踪 ,采用了两种基于 2 D模型的人体运动跟踪方法 :其中 ,一种方法是以区域面积重合率为匹配准则 ,采用由粗到细的匹配过程 ,通过建立 2 D模型以实现与真实人体运动间的准确匹配 ;另一种是基于区域特征的 2 D模型和人体各个部位的连接关系 ,通过确定和标记人体的各个部位 ,最终由 2 D模型来重现真实人体的运动过程 .同时采用以上两种方法 ,对实际人体运动进行了跟踪测试 ,在全身运动的整个过程中能给出较为准确的跟踪结果 .表明该方法不仅能抵御噪声和灰度变化的影响 ,而且能大致估计出被遮挡部位的位置 . Human motion tracking has become a hot issue in the fields of image processing and computer vision. It is receiving increasing attention from more and more researchers due to its wide applications in human-machine interfaces, virtual reality and smart surveillance, robot simulation, etc. In order to track human motion precisely, two methods of automatic tracking are proposed. One method is based on 2-D model. Taking region overlay as the matching criteria, the method adopts a matching procedure from coarse matching to fine matching for establishing the precise correspondence between the 2-D model and real human body motion; the other method is based on the feature of body parts and their connection. By locating the body parts according to their different shapes, the joint connecting the body parts can be located also, and then the human movement can be recovered by 2-D skeleton model. Based on the two methods, real human motion is tracked from simple walking movement to complex gymnastics. The result shows that the method can resist the affection of noise and the variation of intensity, and the position of the overlapped area can be estimated coarsely. Precise result can be acquired in the whole course of the movement of the body.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2002年第7期625-632,共8页 Journal of Image and Graphics
关键词 人体运动跟踪 2-D模型 区域面积重合率 部位标记 图象处理 计算机视觉 Human motion tracking, 2-D model, Region overlay, Labeling of the body parts
  • 相关文献

参考文献9

  • 1Gavrila DM.The visual analysis of human movement: A survey[].Computer Vision and Image Understanding.1999
  • 2Aggarwal J K,Cai Q,Liao W,et al.Nonrigid motion analysis: articulated and elastic motion[].Computer Vision and Image Understanding.1998
  • 3AGGARWAL J K,CAI Q.Human motion analysis: A review[].Computer Vision and Image Understanding.1999
  • 4Akita K.Image sequence analysis of real world human motion[].Pattern Recognition.1984
  • 5Leung MK,Yang YH.First sight: A human body outline labeling system[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1995
  • 6Rourke J O’,Badler N.Model-based image analysis of human motion using constraint propagation[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1980
  • 7Chen Z,Lee H.Knowledge-guided visual perception of 3-D human gait from a single image sequence[].IEEE Transactions on Systems Man and Cybernetics.1992
  • 8Rohr K.Towards model-based recognition of human movements in image sequences[].CVGIP Image Understanding.1994
  • 9Leung M K,Yang Y H.A region based approach for human body motion analysis[].Pattern Recognition.1987

同被引文献10

  • 1Gavrila D M.The visual analysis of human[J]. Computer Vision and Image Understanding, 1999,73( 1 ):82-98.
  • 2Maybank S, Tan T. Introduction special section on visual surveillance[J]. International Journal of computer Vision, 2000,37(2):173.
  • 3Haritaoglu I, Harwood D, Davis L W. Real-time surveillance of people and their activities[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22 (8) :809-830.
  • 4Leung M K, Yang Y H. A region based approach for human body motion analysis [J]. Pattern Recognition, 1987,20 (3): 321-339.
  • 5冈萨雷斯.数字图像处理Manab版[M].北京:电子工业出版社.2005.
  • 6Hu W M,Tan T N,Wang L,et aI.A Survey on Visual Surveil- lance of Object Motion and Behaviors [J].IEEE Transactions on System,Man and Cybernetics,Part C:Application and Re- views,2004,34(3):334-352.
  • 7Sauner N,Sayed T.A Feature-based Tracking Glgorithm for Vehicles in Intersections [C]//The 3rd Canadian Conference on Computer and Robort Vision,2006:59-69.
  • 8He S,Wu Q H,Saunders J R.Group Search Optimizer:an Op- timization Algorithm Inspired by Animal Searching Behavior [J].IEEE Trans on Evolution Computation,2009,13(5):973-990.
  • 9吴众山,雷蕴奇,吴绿芳,魏昇.一种实用的背景提取与更新算法[J].厦门大学学报(自然科学版),2008,47(3):348-352. 被引量:16
  • 10王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部