期刊文献+

Splitting Recursively Enumerable Subalgebras in Recursive Boolean Algebras

Splitting Recursively Enumerable Subalgebras in Recursive Boolean Algebras
全文增补中
导出
摘要 A Boolean algebra B=<B,∧,∨,>is recursive if B is a recursive subset of ω and theoperations ∧,∨ and are partial recursive.A subalgebra C of B is recursive an(r.e.)if C is a recursive(r.e.)subset of B.Given an r.e.subalgebra A,we say A can be split into two r.e.subalgebras A1and A2if(A1∪A2)=A and A1∩A2={0,1}.In this paper we show that any nonrecursive r.e.subalgebra of B canbe split into two nonrecursive r.e.subalgebras of B.This is a natural analogue of the Friedberg’s splittingtheorem in ω recursion theory. A Boolean algebra B=<B,∧,∨,>is recursive if B is a recursive subset of ω and theoperations ∧,∨ and are partial recursive.A subalgebra C of B is recursive an(r.e.)if C is a recursive(r.e.)subset of B.Given an r.e.subalgebra A,we say A can be split into two r.e.subalgebras A1and A2if(A1∪A2)=A and A1∩A2={0,1}.In this paper we show that any nonrecursive r.e.subalgebra of B canbe split into two nonrecursive r.e.subalgebras of B.This is a natural analogue of the Friedberg’s splittingtheorem in ω recursion theory.
作者 史念东
出处 《Acta Mathematica Sinica,English Series》 SCIE 1988年第1期14-17,共4页 数学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部