期刊文献+

Rigidity Theorem for Harmonic Maps from Riemannian Manifold to Grassmannian Manifold

Rigidity Theorem for Harmonic Maps from Riemannian Manifold to Grassmannian Manifold
全文增补中
导出
摘要 We first study the Grassmannian manifoldG n (Rn+p)as a submanifold in Euclidean space Λ n (R n+p). Then we give a local expression for each map from Riemannian manifoldM toG n (R n+p) ?Λ n (R n+p), and use the local expression to establish a formula which is satisfied by any harmonic map fromM toG n (R n+p). As a consequence of this formula we get a rigidity theorem. We first study the Grassmannian manifoldG n (Rn+p)as a submanifold in Euclidean space Λ n (R n+p). Then we give a local expression for each map from Riemannian manifoldM toG n (R n+p) ?Λ n (R n+p), and use the local expression to establish a formula which is satisfied by any harmonic map fromM toG n (R n+p). As a consequence of this formula we get a rigidity theorem.
作者 王长平
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1990年第4期297-305,共9页 数学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部