期刊文献+

Extrapolation for the L^p Dirichlet Problem in Lipschitz Domains

Extrapolation for the L^p Dirichlet Problem in Lipschitz Domains
原文传递
导出
摘要 Let L be a second-order linear elliptic operator with complex coefficients. It is shown that if the L^p Dirichlet problem for the elliptic system L(u) = 0 in a fixed Lipschitz domain Ω in Rd is solvable for some 1 < p = p_0 <2(d-1)/(d-2), then it is solvable for all p satisfying ■ The proof is based on a real-variable argument. It only requires that local solutions of L(u) = 0 satisfy a boundary Cacciopoli inequality. Let L be a second-order linear elliptic operator with complex coefficients. It is shown that if the L^p Dirichlet problem for the elliptic system L(u) = 0 in a fixed Lipschitz domain Ω in Rd is solvable for some 1 < p = p_0 <2(d-1)/(d-2), then it is solvable for all p satisfying ■ The proof is based on a real-variable argument. It only requires that local solutions of L(u) = 0 satisfy a boundary Cacciopoli inequality.
作者 Zhongwei Shen
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第6期1074-1084,共11页 数学学报(英文版)
基金 Supported in part by NSF(Grant No.DMS-1600520)
关键词 DIRICHLET PROBLEM LIPSCHITZ DOMAIN EXTRAPOLATION Dirichlet problem Lipschitz domain extrapolation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部