期刊文献+

Gelfand–Kirillov Dimension and Reducibility of Scalar Generalized Verma Modules 被引量:1

Gelfand–Kirillov Dimension and Reducibility of Scalar Generalized Verma Modules
原文传递
导出
摘要 The Gelfand–Kirillov dimension is an invariant which can measure the size of infinitedimensional algebraic structures. In this article, we show that it can also measure the reducibility of scalar generalized Verma modules. In particular, we use it to determine the reducibility of scalar generalized Verma modules associated with maximal parabolic subalgebras in the Hermitian symmetric case. The Gelfand–Kirillov dimension is an invariant which can measure the size of infinitedimensional algebraic structures. In this article, we show that it can also measure the reducibility of scalar generalized Verma modules. In particular, we use it to determine the reducibility of scalar generalized Verma modules associated with maximal parabolic subalgebras in the Hermitian symmetric case.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第11期1854-1860,共7页 数学学报(英文版)
基金 supported by the National Science Foundation of China(Grant No.11601394) supported by the National Science Foundation of China(Grant No.11701381) Guangdong Natural Science Foundation(Grant No.2017A030310138)
关键词 Gelfand–Kirillov DIMENSION GENERALIZED Verma MODULE REDUCIBILITY Gelfand–Kirillov dimension generalized Verma module reducibility
  • 相关文献

参考文献1

二级参考文献18

  • 1Bai Z Q. A characterization of the unitary highest weight modules by Euclidean Jordan algebras. J Lie Theory, 2013, 23:747 778.
  • 2Davidson M G, Enright T J, Stanke R J. Differential operators and highest weight representations. Mem Amer Math Soc, 1991, 94:1 102.
  • 3Enright T J, Howe R, Wallach N R. A classification of unitary highest weight modules. Progr Math, 1983, 40:99143.
  • 4Enright T J, Hunziker M. Resolutions and Hilbert series of the unitary highest weight modules of the exceptional groups. Represent Theory, 2004, 8:15-51.
  • 5Enright T J, Hunziker M. Resolutions and Hilbert series of determinantal varieties and unitary highest weight modules. J Algebra, 2004, 273:608 639.
  • 6Enright T J, Hunziker M, Pruett W A. Diagrams of Hermitian type, highest weight modules, and syzygies of determi- nantal varieties. Progr Math, 2014, 257:125-188.
  • 7Enright T J, Joseph A. An intrinsic analysis of unitarizable highest weight modules. Math Ann, 1990, 288:571 594.
  • 8Enright T J, Willenbring J F. Hilbert series, Howe duality and branching for classical groups. Ann Math, 2004, 159: 339375.
  • 9Jakobsen H P. The last possible place of unitarity for certain highest weight modules. Math Ann, 1981, 256:439-447.
  • 10Jakobsen H P. Hermitian symmetric spaces and their unitary highest weight modules. J Funct Anal, 1983, 52:385 412.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部