期刊文献+

一个量子恒等式的初等证明 被引量:1

A primary proof of a quantum equation
下载PDF
导出
摘要 在量子群及其表示理论中 ,一些含有参数 v的所谓量子恒等式起着重要的作用 ,往往可以大大简化证明或推导的过程 . Some quantum equations with parameter play an important role in the theory of quantam group and their representations,and can always simplify process of proofs.In this paper,we use primary method to prove an important guantum equation.
出处 《信阳师范学院学报(自然科学版)》 CAS 2002年第3期255-257,276,共4页 Journal of Xinyang Normal University(Natural Science Edition)
关键词 初等证明 量子群 量子数 量子恒等式 表示理论 证明过程 quantam group quantum number quantum equation
  • 相关文献

参考文献4

  • 1[1]LUSZTIG G.Introduction to guantam groups[M].Progress in Mafhematics 110,Birkhauser,Boston.Basel.Berlin,1993.
  • 2[2]LUSZTIG G.Quanttum deformations of certain simple modules over enveloping algebras[J].Adv in Math,1988,70:237-249.
  • 3[3]LUSZTIG G.On guantum groups[J].J Algebra,1990,131:466-475.
  • 4[4]JIMBO M.A q-difference analogue of U(g) and the Yang-Baxter eguation[J].Lett Math Phys,1985,10:63-69.

同被引文献7

  • 1DRINFELD V G.Hopf Algebras and the Yang-Baxter Equation[J].Soviet Math Dokl,1985,32:254-258.
  • 2JIMBO M.A q-difference analogue of U(g) and the Yang-Baxter Equation[J].Lett Math Phys,1985,10:63-69.
  • 3KASHIWARA M.On Crystal Bases of the q-analogue of Universal Enveloping Algebras[J].Duke Math J,1991,63(2):465-516.
  • 4LUSZTIG G.Canonical Basis Arising from Quantized Enveloping Algebras[J].J Amer Math Soc,1990(3):447-498.
  • 5CURTIS C W,REINER I.Methods of Representation Theory with Applications to Finite Groups and Orders[M].New York:Volume II.Wiley,1985.
  • 6HUMPHREYS J E.Reflection Groups and Coxeter Groups[M].C U P,1992.
  • 7LUSZTIG G.Introduction to Quantum Groups[M].Birkhauser,Boston,1993.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部