期刊文献+

A multi-functional nanoplatform for efficacy tumor theranostic applications 被引量:4

A multi-functional nanoplatform for efficacy tumor theranostic applications
下载PDF
导出
摘要 Nanomaterials with multiple functions have become more and more popular in the domain of cancer research. MoS2 has a great potential in photothermal therapy, X-ray/CT imaging and drug delivery. In this study, a water soluble MoS2 nanosystem(MoS2-PEG) was synthesized and explored in drug delivery, photothermal therapy(PTT) and X-ray imaging.Doxorubicin(DOX) was loaded onto MoS2-PEG with a high drug loading efficiency(~69%)and obtained a multifunctional drug delivery system(MoS2-PEG/DOX). As the drug delivery, MoS2-PEG/DOX could efficiently cross the cell membranes, and escape from the endosome via NIR light irradiation, lead to more apoptosis in MCF-7 cells, and afford higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 11.6-fold higher DTX uptake of tumor than DOX. Besides, MoS2-PEG/DOX not only served as a drug delivery system, but also as a powerful PTT agent for thermal ablation of tumor and a strong X-ray contrast agent for tumor diagnosis. In the in vitro and in vivo studies, MoS2-PEG/DOX exhibited excellent tumor-targeting efficacy, outstanding synergistic anti-cancer effect of photothermal and chemotherapy and X-ray imaging property,demonstrating that MoS2-PEG/DOX had a great potential for simultaneous diagnosis and photothermal-chemotherapy in cancer treatment. Nanomaterials with multiple functions have become more and more popular in the domain of cancer research. MoS2 has a great potential in photothermal therapy, X-ray/CT imaging and drug delivery. In this study, a water soluble MoS2 nanosystem(MoS2-PEG) was synthesized and explored in drug delivery, photothermal therapy(PTT) and X-ray imaging.Doxorubicin(DOX) was loaded onto MoS2-PEG with a high drug loading efficiency(~69%)and obtained a multifunctional drug delivery system(MoS2-PEG/DOX). As the drug delivery, MoS2-PEG/DOX could efficiently cross the cell membranes, and escape from the endosome via NIR light irradiation, lead to more apoptosis in MCF-7 cells, and afford higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 11.6-fold higher DTX uptake of tumor than DOX. Besides, MoS2-PEG/DOX not only served as a drug delivery system, but also as a powerful PTT agent for thermal ablation of tumor and a strong X-ray contrast agent for tumor diagnosis. In the in vitro and in vivo studies, MoS2-PEG/DOX exhibited excellent tumor-targeting efficacy, outstanding synergistic anti-cancer effect of photothermal and chemotherapy and X-ray imaging property,demonstrating that MoS2-PEG/DOX had a great potential for simultaneous diagnosis and photothermal-chemotherapy in cancer treatment.
出处 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2017年第3期235-249,共15页 亚洲药物制剂科学(英文)
基金 supported by grants from the National Natural Science Foundation of China(Nos.81273451,81302717 and81101684)
关键词 MULTIFUNCTIONAL drug delivery ENDOSOME ESCAPE TUMOR-TARGETING BIO-IMAGING THERANOSTIC Multifunctional drug delivery Endosome escape Tumor-targeting Bio-imaging Theranostic
  • 相关文献

同被引文献17

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部