期刊文献+

MSNCs and MgO-MSNCs as drug delivery systems to control the adsorption kinetics and release rate of indometacin

MSNCs and MgO-MSNCs as drug delivery systems to control the adsorption kinetics and release rate of indometacin
下载PDF
导出
摘要 Mesoporous silica cocoon materials(MSNCs) and MgO doped mesoporous silica cocoons(MgO-MSNCs) with the cocoon-like hierarchical morphology and different alkalinities were synthesized as carriers for acidic drugs. Indomethacin(IMC) was selected as a model drug and loaded into carriers. All materials and the drug-loaded samples were characterized by nitrogen adsorption, FTIR spectroscopy, transmission electron microscopy(TEM), powder X-Ray diffraction(XRD) and differential scanning calorimetry(DSC). The effect of the Mg/Si molar ratio on the kinetics and equilibrium of IMC adsorption on MgO-MSNCs was thoroughly examined, and it was found that the increase in the Mg/Si molar ratio resulted in an increasing IMC adsorption rate due to the increased affinity between alkaline MgO-MSNCs and weak acid IMC. The adsorption kinetics fitted a pseudo second-order model well. The Freundlich isotherm showed a better fit, indicating that the coverage of IMC on the surface of MgO-MSNCs was heterogeneous. The maximum adsorption capacity of adsorbent was calculated by the Langmuir isotherm equation. The Temkin equation provided further support that the IMC adsorption on MgO-MSNCs was dominated by a chemisorption process. MgO-MSNCs also have the advantage of allowing an adjustment of the drug release rate of weak acid drug. The cytotoxicity assay indicated good biocompatibility of MgO-MSNCs. Our research on MgO-MSNCs carriers demonstrated their potential therapeutic benefit for safe and effective management of IMC adsorption and in vitro release. Mesoporous silica cocoon materials(MSNCs) and MgO doped mesoporous silica cocoons(MgO-MSNCs) with the cocoon-like hierarchical morphology and different alkalinities were synthesized as carriers for acidic drugs. Indomethacin(IMC) was selected as a model drug and loaded into carriers. All materials and the drug-loaded samples were characterized by nitrogen adsorption, FTIR spectroscopy, transmission electron microscopy(TEM), powder X-Ray diffraction(XRD) and differential scanning calorimetry(DSC). The effect of the Mg/Si molar ratio on the kinetics and equilibrium of IMC adsorption on MgO-MSNCs was thoroughly examined, and it was found that the increase in the Mg/Si molar ratio resulted in an increasing IMC adsorption rate due to the increased affinity between alkaline MgO-MSNCs and weak acid IMC. The adsorption kinetics fitted a pseudo second-order model well. The Freundlich isotherm showed a better fit, indicating that the coverage of IMC on the surface of MgO-MSNCs was heterogeneous. The maximum adsorption capacity of adsorbent was calculated by the Langmuir isotherm equation. The Temkin equation provided further support that the IMC adsorption on MgO-MSNCs was dominated by a chemisorption process. MgO-MSNCs also have the advantage of allowing an adjustment of the drug release rate of weak acid drug. The cytotoxicity assay indicated good biocompatibility of MgO-MSNCs. Our research on MgO-MSNCs carriers demonstrated their potential therapeutic benefit for safe and effective management of IMC adsorption and in vitro release.
出处 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2019年第3期275-286,共12页 亚洲药物制剂科学(英文)
基金 supported by the National Basic Research Pro-gram of China(973 Program)(No.2015CB932100) National Natural Science Foundation of China(No.81473165) Liaoning Provincial Key Laboratory of Drug Preparation De-sign&Evaluation of Liaoning Provincial Education Depart-ment(No.LZ2015068)
关键词 MSNCs MgO-MSNCs INDOMETACIN ADSORPTION RELEASE RATE MSNCs MgO-MSNCs Indometacin Adsorption Release rate
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部