期刊文献+

基于金字塔结构的乳腺肿块自动检测方法 被引量:5

Auto-detection of Lesions in Digitized Mammograms based on Image Pyramid
下载PDF
导出
摘要 在乳腺图像中,肿块大多被埋没在复杂的、高密度的腺体背景中难以检测。针对这一问题,提出了一种基于金字塔结构的乳腺肿块自动检测方法。文中对几种典型的金字塔结构的构造方法做了比较;提出了一种使用BP人工神经网络用于实现低分辨率图像中肿块种子区域检测的新方法;提出了一种新的权值差别规则,同时添加了标志锥,使得生长算法不再严格受限于肿块种子的面积和形状。实验结果证明这种方法对于辅助临床医生诊断乳腺病变是有效的。 Lesions are usually difficult to detect as they often superimpose on dense structured background. In order to solve this problem, an approach of auto-detection of lesions based on image pyramid is presented in this paper. In the lower resolution image,a mass seed-region was detected by an ANN. With an improved grow tree algorithm, the edge of lesions was refined in the higher resolution image. A label pyramid is proposed in this method to make the tree grow method never restricted by area and shape of the seed-region. Experimental results show that the proposed approach is applicable to assist the radiologist's diagnosis.
出处 《上海生物医学工程》 2002年第2期8-11,共4页 Shanghai Journal of Biomedical Engineering
关键词 乳腺肿块 金字塔结构 人工神经网络 自动识别 诊断 Image Pyramid Artificial Neural Network Auto-detection
  • 相关文献

参考文献4

  • 1[1]Suking J,et al. The mammographic Image analysis society digital digital mammogram database [R ]. Proceedings of the 2nd International Workshop on Digital Mammography. York,England. 1994,375~ 378
  • 2[2]P.J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code [J]. IEEE Transaction on Communication, 1983,COM-31 (4): 532-542
  • 3[3]P. Meer, E. S. Baugher and A. Rosenfeld. Frequency domain analysis and synthesis of image pyramid generating kernels[J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 1987,PAMI-9(4): 512-522
  • 4[4]M. Unser A. Aldroubi and M. Eden. The L2 polynomial spline pyramid[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence. 1993, PAMI- 15 (4): 364-379

同被引文献51

  • 1杨少军,杨艺山,刘晨亮.线特征提取的多尺度分析[J].计算机应用,2004,24(9):16-18. 被引量:5
  • 2刘平,陈斌,阮波.基于边缘信息的图像阈值化分割方法[J].计算机应用,2004,24(9):28-30. 被引量:33
  • 3孙克英,王昌元,李月卿,孙凤国,王巍.乳腺肿块的分割方法[J].泰山医学院学报,2005,26(3):261-263. 被引量:1
  • 4张正炳,朱耀庭,朱光喜,薛东辉.图像的局部自相似性用于边缘检测的方法研究[J].华中理工大学学报,1996,24(10):53-55. 被引量:2
  • 5Denise Guliato, Rangaraj M. Rangayyan. Segmentation of breast tumors in mammograms by fuzzy region growing [J ]. IEEE,1998, 20(2): 1002-1005.
  • 6W.R.Hendee, C.Beam, E.Hendreck. Proposition: all mammograms should be double -read [J]. Med. Phys, 1999, 115-118.
  • 7Jiang Y, Nishikawa RM, Schmidt RA, et al. Improving breast cancer diagnosis with computer-aided diagnosis[J ]. Acad Radiol.1999, 6(1):22-23.
  • 8Berkman Sahiner, Nicholas Petrick, Heang-Ping Chan. Computer-aided characterization of mammographic masses: Accuracy of mass segmentation and its effects on characterization [J ]. IEEE tractions on medical imaging, 2001, 20(12): 1275-1284.
  • 9Sheila Timp, Nico Karssemeijer. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography[J]. Med. Phys, 2004, 958-971.
  • 10Mattew A, Kupindki, Maryellen L. Geger. Automated seeded lesion segmentation on digital mammograms[J]. IEEE Trans. Med . Imaging, 1998, 17(4): 510-517.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部