期刊文献+

A mathematical model to describe the diurnal pattern of enteric methane emissions from non-lactating dairy cows post-feeding 被引量:3

A mathematical model to describe the diurnal pattern of enteric methane emissions from non-lactating dairy cows post-feeding
原文传递
导出
摘要 Enteric methane emission is not only a source of energy loss in ruminants, but also a potent contributor to greenhouse gas production. To identify the nature and timing of interventions to reduce methane emissions requires knowledge of temporal kinetics of methane emissions during animal husbandry.Accordingly, a mathematical model was developed to investigate the pattern of enteric methane emissions after feeding in dairy cows. The model facilitated estimation of total enteric methane emissions(V,g) produced by the residual substrate(V1, g) and newly ingested feed(V2, g). The model was fitted to the10 h methane emission patterns after morning feeding of 16 non-lactating dairy cows with various body weights(BW), and the obtained parameters were used to predict the kinetics of 24 h methane emission for each animal. The rate of methane emission(g/h) reached a maximum within 1 to 2 h after feeding,followed by a gradual post-prandial decline to a basal value before the next feeding. The model satisfactorily fitted curves for each cow according to the criterion of goodness-of-fit, and provided biological descriptions for fluctuations in methane emissions based on basal V1 and feeding V2 in response to the changes in BW and dry matter intake(DMI) of different dairy cows. The basal V1 and feeding V2 are probably maintained by slow-and readily-degradable substrates, respectively. The former contributed at least 0.6 of methane production. In summary, the model provides a means to separate basal V1 and feeding V2 within V, and can be used to predict 24 h emission from a single feeding period. Enteric methane emission is not only a source of energy loss in ruminants, but also a potent contributor to greenhouse gas production. To identify the nature and timing of interventions to reduce methane emissions requires knowledge of temporal kinetics of methane emissions during animal husbandry.Accordingly, a mathematical model was developed to investigate the pattern of enteric methane emissions after feeding in dairy cows. The model facilitated estimation of total enteric methane emissions(V,g) produced by the residual substrate(V1, g) and newly ingested feed(V2, g). The model was fitted to the10 h methane emission patterns after morning feeding of 16 non-lactating dairy cows with various body weights(BW), and the obtained parameters were used to predict the kinetics of 24 h methane emission for each animal. The rate of methane emission(g/h) reached a maximum within 1 to 2 h after feeding,followed by a gradual post-prandial decline to a basal value before the next feeding. The model satisfactorily fitted curves for each cow according to the criterion of goodness-of-fit, and provided biological descriptions for fluctuations in methane emissions based on basal V1 and feeding V2 in response to the changes in BW and dry matter intake(DMI) of different dairy cows. The basal V1 and feeding V2 are probably maintained by slow-and readily-degradable substrates, respectively. The former contributed at least 0.6 of methane production. In summary, the model provides a means to separate basal V1 and feeding V2 within V, and can be used to predict 24 h emission from a single feeding period.
出处 《Animal Nutrition》 SCIE 2015年第4期329-338,共10页 动物营养(英文版)
基金 “Strategic Priority Research ProgramClimate Change:Carbon Budget and Relevant Issues”(Grant No.XDA05020700) the National Natural Science Foundation of China(Grant No.31472133,31561143009 and 31320103917) International Atomic Energy Agency(Grant No.16315)for the joint financial supports
关键词 METHANE Logistic-exponential model METHANOGEN RUMEN Methane Logistic-exponential model Methanogen Rumen
  • 相关文献

同被引文献8

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部