期刊文献+

Anti-insulin resistant effect of ferulic acid on high fat diet-induced obese mice 被引量:2

Anti-insulin resistant effect of ferulic acid on high fat diet-induced obese mice
下载PDF
导出
摘要 Objective: To evaluate the insulin sensitivity action of ferulic acid(FA) in skeletal muscle and hypothalamus of high-fat diet(HFD)-induced obese mice. Methods: Obese mouse model was induced by HFD(45 kcal% lard fat) for 16 weeks. After 8 weeks of HFD feeding, these obese mice were orally treated with FA at doses of 25 and 50 mg/kg/day for 8 weeks. At the end of all treatments, the epididymal fat, pancreas, skeletal muscle and hypothalamus were removed for biochemical parameter and protein expression examinations. Results: FA treatment significantly decreased leptin level in fat tissue and insulin level in pancreas(P < 0.05). Interestingly, obese mice treated with FA increased the protein expressions of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and phosphorylated-protein kinase B in both muscle and brain(P < 0.05). The phosphorylations of adenosine monophosphate-activated protein kinase and acetyl-CoA carboxylase in muscle, and leptin receptor protein in hypothalamus were also increased(P < 0.05). The pancreatic islets histology showed smaller size in obese mice treated with FA compared to untreated obese mice. Conclusions: These findings indicate the beneficial effect of FA in improving insulin resistance in HFD-induced obese mice. These effects are probably mediated via modulating the insulin receptor substrate/phosphatidylinositol 3-kinase/protein kinase B or adenosine monophosphate-activated protein kinase pathways. Objective: To evaluate the insulin sensitivity action of ferulic acid(FA) in skeletal muscle and hypothalamus of high-fat diet(HFD)-induced obese mice. Methods: Obese mouse model was induced by HFD(45 kcal% lard fat) for 16 weeks. After 8 weeks of HFD feeding, these obese mice were orally treated with FA at doses of 25 and 50 mg/kg/day for 8 weeks. At the end of all treatments, the epididymal fat, pancreas, skeletal muscle and hypothalamus were removed for biochemical parameter and protein expression examinations. Results: FA treatment significantly decreased leptin level in fat tissue and insulin level in pancreas(P < 0.05). Interestingly, obese mice treated with FA increased the protein expressions of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and phosphorylated-protein kinase B in both muscle and brain(P < 0.05). The phosphorylations of adenosine monophosphate-activated protein kinase and acetyl-CoA carboxylase in muscle, and leptin receptor protein in hypothalamus were also increased(P < 0.05). The pancreatic islets histology showed smaller size in obese mice treated with FA compared to untreated obese mice. Conclusions: These findings indicate the beneficial effect of FA in improving insulin resistance in HFD-induced obese mice. These effects are probably mediated via modulating the insulin receptor substrate/phosphatidylinositol 3-kinase/protein kinase B or adenosine monophosphate-activated protein kinase pathways.
出处 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2018年第12期604-608,共5页 亚太热带生物医学杂志(英文版)
基金 supported by the Faculty of Medicine Research Fund(GEN2-01/2016),Thammasat University,Thailand
  • 相关文献

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部