期刊文献+

基于Hadoop的RDF数据存储策略综述 被引量:1

Overview of the Storage Strategy for RDF Data Based on Hadoop
下载PDF
导出
摘要 随着信息爆炸时代的到来和语义网的快速发展,海量RDF数据存储已成为普遍关注的问题。分布式云计算技术为海量RDF的存储和查询提供了了新的、更高效的解决方案,而基于Hadoop平台的RDF数据存储研究成为了研究焦点。本文对Hadoop在海量RDF数据存储中应用的关键问题进行分析,介绍了现有的基于Hadoop平台的RDF存储系统并将它们进行综合分析,最后对未来发展方向进行了展望。 With the arrivalofthe era ofinformation explosion and the rapid development ofthe semantic web, the storage for large-scale RDF data has become an issue of common concern. A distributed cloud computing technology, which is more efficient, provides a new solution for large-scale RDF's storage and query and the research on storing RDF data based on Hadoop platform has become the focus of research. This paper carries on the analysis to the key issues of the application of the Hadoop in the massive RDF data storage and introduces the existing RDF Storage System based on Hadoop platform and summarize them. Finally this paper proposes the future development direction.
作者 杨健 罗军
出处 《信息安全与技术》 2015年第5期46-48,共3页
关键词 语义网 RDF 存储系统 查询 HADOOP semantic web RDF storage system query hadoop
  • 相关文献

参考文献11

  • 1Mary Burke.The semantic web and the digital library[J]. Aslib Proceedings . 2009 (3)
  • 2Klyne G,Carroll J J,McBride B.Resource description framework (RDF):Concepts and abstract syntax. W3C recommendation . 2004
  • 3Apache Hadoop.
  • 4Choi H,Son J,Cho Y H, et al.SPIDER: a system for scalable, parallel/distributed evaluation of large-scale RDF data. Proceedings of the 18th ACM conference on Information and knowledge management . 2009
  • 5Papailiou N,Konstantinou I,Tsoumakos D, et al.H2RDF: adaptive query processing on RDF data in the cloud. Proceedings of the 21st international conference companion on World Wide Web . 2012
  • 6Borthakur D.The hadoop distributed file system: Architecture and design. Hadoop ProjectWebsite . 2007
  • 7Apache HBase. http://hbase.apache.org/ .
  • 8Mohammad Farhan,,Pankil Doshi,Latifur Khan.Storage and Retrieval of RDF Graph using hadoop and mapreduce. Cloud Com . 2009
  • 9Rohloff K,Schantz R E.High-performance, massively scalable distributed systems using the MapReduce software framework:the SHARD triple-store. Programming Support Innovations for Emerging Distributed Applications . 2010
  • 10Myung J,Yeon J,Lee S.SPARQL basic graph pattern processing with iterative MapReduce. Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud . 2010

共引文献2

同被引文献5

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部