摘要
论文在传统神经网络的结构上做了一定改进,提出了一种基于集成免疫小波神经网络的计算机病毒检测方法,仿真测试表明:经过免疫聚类分析特征选择算法优化的集成免疫小波神经网络模型,在识别已知病毒和未知病毒精度上有明显的提高。
This paper presents a computer virus detection method based on integrated immune wavelet neural network and the structure of the traditional neural network.The simulation results show that after immune clustering analysis of feature selection algorithm to optimize integrated immune wavelet neural network model in the identification of known and unknown viruses accuracy is significantly improved.
基金
湖北省教育厅科学研究计划项目:基于模拟退火遗传算法的网络优化应用研究(编号B2014201)
2015年武汉船院院级课题立项项目:一种基于集成免疫小波神经网络计算机病毒检测方法(编号2015y11)
关键词
集成免疫小波神经网络
计算机病毒
聚类分析
integrated immune wavelet neural network
computer virus
cluster analysis