期刊文献+

基于小波变换和改进的FCM算法的医学CT图像分割法 被引量:1

Medical CT Image Segmentation Based on Wavelet Transform and Improved FCM Algorithm
下载PDF
导出
摘要 为提高计算机辅助诊断的准确性,提出一种基于小波变换和改进的模糊C均值(Fuzzy C-Means,FCM)算法的医学CT图像分割方法。以FCM算法为基础,首先利用小波变换对医学图像进行分解,用分解后低频图像的像素点作为FCM算法的样本点;其次,利用马氏距离来进一步修正FCM_S(FCM_Spatial)算法,修正后的FCM算法能更加精确地反映医学图像的信息。实验结果表明,算法的效率得到较大提高。 In order to enhance the accuracy of computer auxiliary diagnosis, a medical CT image segmentation algorithm based on wavelet transform and improved FCM algorithm is proposed .Because the traditional FCM algorithm usually run on all im-age pixels, which makes the efficiency of the algorithm reduced.On the basis of FCM algorithm, firstly this algorithm processes the image using wavelet transform, and the low frequency images by wavelet transform are inputted into FCM algorithm to obtain seg-mentation results.It not only greatly reduces the time complexity of the algorithm but also effectively suppresses image noise .Sec-ondly, the algorithm introduces the Mahalanobis distance to improve FCM_S algorithm, and the improved FCM algorithm can be more accurate to obtain medical image information .The experiments show that this algorithm significantly improves the segmenta-tion’s efficiency.
作者 马春
出处 《安庆师范学院学报(自然科学版)》 2016年第2期33-38,共6页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽中医药大学自然科学基金(ZR2013001)
关键词 FCM算法 马氏距离 图像分割 CT FCM algorithm mahalanobis distance image segmentation CT
  • 相关文献

参考文献7

二级参考文献33

  • 1张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687. 被引量:32
  • 2丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 3CHENG H D, JIANG X H, SUN Y, et al. Color image segmentation : advances and prospects [ J ]. Pattern Recognition, 2001, (34) :2259-2281.
  • 4CHEN W J, GIGER M L, BICK U. A fuzzy c-means (FCM) -based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images [J]. Academic Radiology, 2006,13( 1 ) :63-72.
  • 5GORRIZ J M, RAMIREZ J, LANG E W, et al. Hard C- means clustering for voice activity detection [ J ]. Speech communication, 2006, (48) : 1638-1649.
  • 6CHUANG K S, TZENG H L, CHEN S W. Fuzzy Cmeans clustering with spatial information for image segmentation [ J ]. Computerized Medical Imaging and Graphics, 2006, (30) :9-15.
  • 7CHEN S C, ZHANG D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Trans. Systems Man Cybernet, B, 2004,34(4) :1907-1916.
  • 8CAI W L, CHEN S C, ZHANG D Q. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[ J]. Pattern Recognition, 2007,40 ( 7 ) : 825-838.
  • 9AHMED M N, YAMANY S M, MOHAMED N. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data [ J ]. IEEE Trans. on Medical Imaging, 2002, (21) : 193-199.
  • 10ZHANG D Q, CHEN S C. A novel kernelized fuzzy c- means algorithm with application in medical image segmentation[J]. Artificial Intelligence in Medicine, 2004, ( 32 ) :37-50.

共引文献51

同被引文献23

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部