摘要
研究了导弹抛散盲区半径的评定方法 .所谓盲区半径 Rm,指的是以虚拟落点为圆心 ,子弹无法打到的圆域的半径 .给出了几种不同的方法去评估盲区半径 .首先 ,对于弹着点与圆心之间距离 (即半径 )的分布函数 F (d) ,将 Rm 看作是分布函数 F(d)的一个 p分位点ξp,就可以利用矩法和极大似然法得到 Rm(即ξp)的点估计 ;此外 ,将盲区半径指标 Rm 看成是一个随机变量 ,每次弹着点的最小半径作为样本值 ,通过直观的方法得到 Rm 的 3种点估计 .对于这些估计 ,给出它们的分布或近似分布 ,用经典方法可得到盲区半径的置信上限 .
The evaluating methods for the blind area radius of missile bullets are discussed. 'Blind area radius' means the radius of a circular area (with center at the suppositional point of fall of the missile) that is not covered by the missile shot. A number of different approaches to calculate the blind area radius are employed: first, for the distribution function F(d) of the distance between the points of fall of the missile bullets and the center of the circle, taking R m to be a p-quantile ξ p of the distribution function F(d), and thus obtain the point estimate of R m, i.e. ξ p, by employing the moment method and the maximum likelihood method; further, deeming the blind area radius index R m to be a stochastic variable, and the minimum radius of each point of fall of the missile bullets to be the sample value; three types of point estimate of R m are obtained through some intuitionistic method. And for those point estimates, their distributions or approximate distributions are obtained. The confidence upper limits of the blind area radius R m are obtained by using the classical approach. Finally, a relevant instance is given as an illustration.
出处
《浙江大学学报(理学版)》
CAS
CSCD
2002年第4期380-384,共5页
Journal of Zhejiang University(Science Edition)
基金
航天机电集团公司资助项目