摘要
提出几类一阶常微分方程 ,通过变量替换法化为齐次微分方程 ,再借助交换变量位置法 ,论证它们的可积判据 ,给出它们通积分的表达式 ,所得结果是相应文献结果的推广 .
This paper puts forth some kinds of first-order differential equations, which are transformed into homogeneous differential equations. It proves their integral criteria and gives their expversion of integral by substitution of variables position method.Thus expancling their scope of uses.
出处
《黔东南民族师专学报》
2001年第6期1-4,共4页
Journal of Southeast Guizhou National Teachers College
关键词
可积判据
一阶常微分方程
变量替换
通积分
通解
齐次微分方程
first-order homogeneous differentias equation
variable substitution
integral
denomination of integrals
general solution.