摘要
本文讨论了一类非线性二阶常微分方程 0)()()1())((1=-++xuxpxxum 0],1,0(>mx 正解的存在问题,用非线性算子方法证明了正解的存在性、唯一性。并且,给出了这个正解的一个逼近。推广了文献[1]的某些结论。
In this paper, an initial value problem for a nonlinear ordinary differential equation of second order0)()()1())((1=-++xuxpxxum 0],1,0(>mx is considered. Some nonlinear operator methods are used to prove the existence and uniqueness of positive solutions. Moreover, an asymptotic behavior of positive solutions is given. The results improve and generalize some results in [1].
出处
《哈尔滨学院学报》
2002年第8期5-8,共4页
Journal of Harbin University
关键词
常微分方程
正解
非线性算子
不动点定理
渐进状态
nonlinear ordinary differential equation
positive solution
nonlinear operator
fixed point theorem
asymptotic behavior