期刊文献+

鲁棒总体均方最小自适应滤波:算法与分析 被引量:6

Robust Total Least Mean Square Adaptive Filter:Algorithm and Analysis
下载PDF
导出
摘要 本文研究了在输入输出观测数据均含有噪声的情况下如何有效地进行鲁棒自适应滤波的问题 .以总体均方误差 (TMSE)最小为准则 ,基于最速下降原理 ,通过对总体均方误差梯度进行修正 ,提出了一种鲁棒的总体均方最小自适应滤波算法 .通过与已有算法的对比分析表明 ,该算法能够有效地降低权向量的每步调整量对噪声的敏感程度 .仿真实验的结果进一步表明 ,该算法的鲁棒抗噪性能和稳态收敛精度明显地高于其它同类方法 ,而且可以使用较大的学习因子 ,在高噪声环境下仍然保持良好的收敛性 . The robust adaptive filtering is researched when the input and output signal both corrupted by noise. On the basis of minimizing total mean square error (TMSE) and the steepest descent principle, by modifying the gradient of TMSE, a robust total least mean square (RTLMS) adaptive filter algorithm is proposed. The performance analysis compared with other algorithm demonstrates that the proposed algorithm can efficiently reduce the sensitivity of the weight adjusting-tap to noise. The simulation results show that the robust anti-noise performance and the stable convergence of the proposed algorithm are remarkably higher than other congener algorithms. And it can still keep nice convergence when a larger learning factor is used and the noise is strong.
出处 《电子学报》 EI CAS CSCD 北大核心 2002年第7期1023-1026,共4页 Acta Electronica Sinica
关键词 鲁棒 自适应滤波 总体均方误差 总体均方最小 修正梯度 TMSE 信号处理 Algorithms Computer simulation Convergence of numerical methods FIR filters Gradient methods Least squares approximations Robustness (control systems) Signal processing Spurious signal noise
  • 相关文献

参考文献11

  • 1[1]S Haykin.Adaptive Filter Theory [M].Englewood Cliffs,New Jersey:Prentice Hall,1991.
  • 2[2]G H Golub,C F V Loan.An analysis of total least squares problem [J].SIAM Numer Anal,1980,17(6):883-893.
  • 3[3]D Z Feng,Z Bao,L C Jiao.Total least mean squares algorithm [J].IEEE Trans on Signal Processing,1998,46(8):2122-2130.
  • 4[4]L Xu,E Oja,C Y Suen.Modified Hebbian learning for curve and surface fitting [J].Neural Networks,1992,5(3):441-457.
  • 5[5]K Q Gao,M O Ahmad,M N S Swamy.Constrained anti-Hebbian learning algorithm for total least-squares estimation with applications to adaptive FIR and IIR filtering [J].IEEE Trans on Circuits and Systems II:Analog and Digital Signal Processing,1994,41(11):718-729.
  • 6[6]F L Luo,R Unbehauen,A Cichocki.A minor component analysis algorithm [J].Neural Networks,1997,10(2):291-297.
  • 7[7]C E Davila.An efficient recursive total least squares algorithm for FIR adaptive filtering [J].IEEE Trans on Signal Processing,1994,42(2):268-280.
  • 8[8]B Widrow,S D Stearns.Adaptive Signal Processing [M].Englewood Cliffs,New Jersey:Prentice Hall,1985.
  • 9[9]C S T Choy,W C Siu.Analysis of the convergence and divergence of a constrained anti-Hebbian learning algorithm [J].IEEE Trans on Circuits and Systems II:Analog and Digital Signal Processing,1998,45(11):1494-1502.
  • 10[10]Q Zhang,Y W Leung.Convergence of a Hebbian-type learning algorithm [J].IEEE Trans on Circuits and Systems II:Analog and Digital Signal Processing,1998,45(12):1599-1601.

同被引文献58

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部