期刊文献+

一种自动抽取图像中可判别区域的新方法 被引量:6

A New Approach to Automatic Extraction of Discriminant Regions in Image
下载PDF
导出
摘要 图像分割是图像处理中的一个难题 .为了自动抽取图像中的可判别区域 ,提出了一种基于自组织图归约算法的区域抽取新方法 .首先 ,利用包括颜色、纹理以及位置在内的多模特征抽取算法 ,原始图像被转换成特征图 ;接着 ,通过自组织映射学习算法 ,特征图被映射成自组织图 ;然后 ,对自组织图实施归约算法得到一族约简的自组织图谱系 ;最后 ,利用一个综合的聚类有效性分析指标从约简的自组织图谱系中得到一个最优约简的自组织图 ,以此实现图像区域的分割 .新方法的有效性通过两个评价实验得到了验证 . Image segmentation is a well-known hard problem in image processing. In order to automatically extract discriminant regions from an image, this paper presents a novel method of region extraction, which is based on a SOM (self-organizing map) reduction algorithm presented in the paper. Firstly, according to a multi-feature extraction algorithm, the raw image is transformed into a feature map, in which each feature vector consists of three sub-features: 1) color feature-dominant color of a sub-region, 2) texture feature-MRSAR parameters of a sub-region, 3) and position feature-center coordinate of a sub-region. Secondly, SOM training algorithm is performed against the feature map generated at the first step. A self-organizing map, in which the number of units is much smaller than that of feature vectors in the feature map, is created after SOM training. SOM training establishes a relationship between units in the SOM and feature vectors in the feature map. Those feature vectors, which are close with each other at the feature space, may map to the same unit of the SOM. Then, a family of reduced self-organizing maps is produced using a two-phase reduction algorithm of SOM. At the first phase, the unit, which has the least number of feature vectors at the map, will be reduced. At the second phase, two units, which are nearest at the feature space, will be merged. Those feature vectors mapping to the reduced unit will re-map to other neighbouring units according to a BMU match rule. Finally, in order to select an optimum one from a series of reduced self-organizing maps, an unsupervised cluster-validity analysis is performed. Pixels in the raw image can be grouped into different discriminant regions according to the relationship between the relevant feature map and the optimum reduced self-organizing map. At last, two evaluation experiments are given to verify the effectiveness of the new method.
出处 《计算机学报》 EI CSCD 北大核心 2002年第8期801-809,共9页 Chinese Journal of Computers
关键词 自动抽取图像 可判别区域 特征图 自组织映射 自组织图归约 聚类有效性分析 图像分割 图像处理 计算机视觉 feature map, discriminant region, SOM, reduction of SOM, clustering validity
  • 相关文献

参考文献1

  • 1Castleman KR 朱志刚等(译).数字图像处理[M].北京:电子工业出版社,1998..

同被引文献38

  • 1陈艳,孙羽菲,张玉志.灰度图像中字符切分方法的研究[J].中文信息学报,2004,18(4):44-49. 被引量:11
  • 2吕俊哲.图像二值化算法研究及其实现[J].科技情报开发与经济,2004,14(12):266-267. 被引量:28
  • 3王恺,王庆人.中英文混合文章识别问题[J].软件学报,2005,16(5):786-798. 被引量:18
  • 4钟辉,姜小帅,刘辉.文档图像汉字检索方法[J].沈阳建筑大学学报(自然科学版),2005,21(4):382-385. 被引量:2
  • 5S Belongie. C Carson et al. Color - and texture - based image segmentation using EM and its application to content - based image retrieve[C] .In: Proc of ICCV, 1998:675 - 682.
  • 6D Comanieiu. P Meer Mean Shift:A Robust Approach towards Feature Space Analysis[ J]. IFEE Transactions on Patter Analysis and Machine Intelligence, 2002:24(5) :603 - 619.
  • 7W Y Ma. BS Manjunath. Edge flow: a framework of boundary detection and image segmentation[C]. In: Proc of CVPR,1997:744 - 49.
  • 8L Shafarenko, M Petrou et al. Automatic watershed segmentation of randomly textured color images [ J ]. IEEE Transactions on Image Processing, 1997,6(11).
  • 9Y Deng, B S Manjunath et al. Color Image Segmentation.
  • 10S Belongie,C Carson et al.Color-and texture-based image segmentation using EM and its application to content-based image retrieve[C].In:Proc of ICCV,1998:675~82

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部