期刊文献+

带第一特征值的具临界指数的拟线性椭圆方程非平凡弱解存在的一个必要条件 被引量:3

A necessary condition on existence of non-trivial weak solutionfor the quasi-linear equation with the first eigenvalue,involving the critical Sobolev exponents
下载PDF
导出
摘要 建立了一类带第一特征值λ1的具临界指数的拟线性椭圆方程 零边值问题的非平凡弱解存在的一个必要条件. In this paper, a necessary condition on existence of non-trivial solution for the quasi-linear equations (-△pμ=λ1|μ|p-2μ+|μ|p-2μ)with the first eigenvalue (λ1)of the p-Laplacian, involving the critical Sobolev exponents, was given.
作者 饶若峰
出处 《黄冈师范学院学报》 2002年第3期1-3,共3页 Journal of Huanggang Normal University
关键词 拟线性椭圆方程 SOBOLEV临界指数 第一特征值 零边值 特征函数 非平凡弱解 quasi-linear elliptic equation critical Sobolev exponent first eigenvalue of the p-Laplacian
  • 相关文献

参考文献3

  • 1Ghoussoub N,Yuan.C. Multiple solutions for quasi-linear PDES involving the critical Sobolev and Hardy exponents[J]. Trans. Amer. Math. Soc.,2000,352(12):5 703~5 743.
  • 2Arcoya D,Orsina L. Landesman-Lazer conditions and quasi-linear elliptic equations[J]. Nonlinear Anal.,1997,28(10):1 623~1 632.
  • 3Lindqvist P. On the equation div(|Du|p-2Du)+λ|u|p-2u=0[J].Proc. Amer.Math.Soc.,1990,109:157~164.

同被引文献13

  • 1朱熹平.临界增长拟线性椭圆型方程的非平凡解[J].中国科学:A辑,1988,3:225-237.
  • 2陈冠华 陈中文 杨利霞.抓住质量不放松,努力攀登新高峰[J].黄冈师范学院学报,1999,19(6):86-88.
  • 3Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents [J]. 1983, 36: 437-477.
  • 4Mawhin J, Willem M. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[J]. New York: Springer Verlag, 1989.
  • 5Tang Chun-lei, Wu Xing-ping. Existence and mulitiplicity of solution of semilinear elliptic equations [J].J. Math. Anal. Appl., 2001, 256: 1-12.
  • 6Azorero J G, Alonso I P. Some results about the existence of a second positive solution in a quasilinear critical problem [J]. Indian Univ. Math. J., 1994, 43: 941-957.
  • 7Jirk Bouchala, Pavel Drábek. Strong resonance for some quasilinear elliptic equations [J]. J. Math. Anal.Appl., 2000, 245: 7- 19.
  • 8Tang Chun-lei, Gao Qi-ju. Elliptic Resonant Problems at Higher Eigenvalues with an Unbounded Nonlinear Term [M]. Academic Press, 1998, 0022-0396.
  • 9Liu Shui-qiang, Tang Chun-lei, Wu Xing-ping. Multiplicity of nontrivial solutions of semilinear elliptic equations [J]. J. Math. Anal. Appl., 2000, 249: 289- 299.
  • 10Wu Xing-ping, Tang Chun-lei. Some existence theorems for elliptic resonant problems [J]. J. Math. Anal.Appl., 2001, 264: 133-146.

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部