期刊文献+

基于模糊概念图的文档聚类及其在Web中的应用 被引量:12

A Documental Clustering Algorithm Based on Fuzzy Concept Graph and Its Application in Web
下载PDF
导出
摘要 随着World Wide Web上数据量的日益庞大,现有的搜索引擎已经不能满足用户日益增长的需求.利用数据挖掘技术,提高搜索效率,实现了查询的用户化.首先提出了模糊概念图的模型来描述词语间的关系,然后在聚类过程中引入概念知识,提出了基于模糊概念图的文档聚类算法,通过分析用户的浏览行为发现兴趣模式.在上述技术的基础上,给出了一种用户化的智能搜索系统的实现策略,通过分析概念间的关系和用户的兴趣模式,评价超链/文档和查询的相关程度,从而帮助用户得到更准确的信息. With the explosive growth of data available on World Wide Web, it seems that the current search engines cannot meet the increasing requirement of users. This paper focuses on improving the effectiveness and the efficiency of Web search with data mining technology. A documental clustering algorithm is presented integrated with fuzzy concept graph for mining interest patterns. Based on the above technology, an intelligent customized search system is proposed that enables users to obtain useful information according to the relation of concepts and own interests. The strategy is to evaluate the relevance of documents effectively based on fuzzy concept graph and user抯 personal interests.
出处 《软件学报》 EI CSCD 北大核心 2002年第8期1598-1605,共8页 Journal of Software
基金 ~~国家自然科学基金资助项目(69983011) 中国博士后基金资助项目
关键词 模糊概念图 文档聚类 WEB 计算机网络 兴趣模式 用户化智能搜索 fuzzy concept graph documental clustering interest pattern customized search
  • 相关文献

参考文献10

  • 1[1]Han, J., Cai, Y., Cercone, N. Knowledge discovery in databases: an attribute-oriented approach. In: Yuan, Le-yan, ed. Proceedings of the 18th International Conference on Very Large Data Bases. Vancouver: Morgan Kaufmann, 1992. 547~559.
  • 2[2]Srikant, R., Agrawal, R. Mining generalized association rules. In: Umeshwar, D., Gray, P.M.D., Shojiro, N., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 407~419.
  • 3[3]Han, J., Fu, Y. Discovery of multiple-level association rules from large database. In: Umeshwar, D., Gray, P.M.D., Shojiro, N., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 420~431.
  • 4[4]Oren, Z., Oren, E., Omid, M., et al. Fast and intuitive clustering of web document. In: Heckerman, D., Mannila, H., Pregibon, D., eds. Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD'97). Newport Beach, CA: AAAI Press, 1997. 287~290.
  • 5[5]Cheung, D.W., Kao, B., Lee, J. W. Discovering user access patterns on the world-wide-web. In: Lu Hong-jun, Motoda, H., Liu, Huan, eds. Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining. Singapore: World Scientific, 1997. 303~316.
  • 6[6]Salton, G., Buckley, C. Term-Weighting approaches in automatic text retrieval. Information Processing and Management, 1988,24(5):513~523.
  • 7[7]Oren, Z. Clustering web documents: a phrase-based method for grouping search engine results [Ph.D. Thesis]. Seattle, WA: University of Washington, 1999.
  • 8[8]Bezedek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981.
  • 9[9]Ruspini, E.H. A new approach to clustering. Information Control, 1969,19(15):22~32.
  • 10[10]Luo, San-ding. Efficient intelligent search system for web information mining (EIS). In: Goscinski, A., Horace, H.S.I, Jia, Wei-jia, et al, eds. Proceedings of the 4th International Conference on Algorithms and Architecture for Parallel Processing (ICA3PP 2000). Hong Kong: World Scientific Publishing, 2000. 716~717.

同被引文献86

引证文献12

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部