摘要
本文在相平面上对半线性奇摄动边值问题 s(d^2x)/(dt^2)=h(x),x(0)=A=A,x(1)=B,0<ε<<1的解的存在性和个数以及极限解进行了定性分析,并对时间进行了渐近估计。
The BVP in singularly perturbed semilinear equation is considered in this paper. The existence, number and limits of solutions for this problem are obtained by the qualitative methods. The time when the phase point passes along a piece of trajectory arc is evaluated asymptotically, thereforo the results in [1] and [2] have been developed.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
1989年第1期1-11,共11页
Journal of East China Normal University(Natural Science)
关键词
边值问题
奇摄动
轨线
渐近分析
boundary value problem (BVP) singular perturbation trajectory asymptotic analysis