摘要
为提高长江干流大通站旬径流与月径流预报精度,选取大通站1980~2012年各旬、各月径流观测资料及国家气候中心同期发布的72项大气环流资料,采用逐步回归法—LMBP算法对大通站的旬平均径流序列进行模拟和预报,并与月尺度径流序列的计算结果做了对比。结果表明,预测值与原序列的趋势基本相同,旬尺度的径流预报精度高于月尺度的预报精度,表明时间尺度的选择影响径流预报的精度。
In order to investigate the precision of ten-days and monthly runoff forecasting at Datong Station in the main stream of the Yangtse River, the runoff data of Datong Station and 72 circulation indices issued by the National Climate Center from 1980 to 2012 were selected to simulate and forecast ten-days average runoff series by using stepwise regression and LMBP algorithm. Compared with the monthly runoff series, the results show that the trend of forecasting is basically consist with the original runoff series; ten-days runoff forecasting precision is higher than that of monthly runoff forecasting, which demonstrates that the selection of time scale has impact on the runoff forecasting precision.
出处
《水电能源科学》
北大核心
2014年第6期13-15,4,共4页
Water Resources and Power
基金
国家自然科学基金项目(51079099
51279140
51379149)
国家自然科学基金青年科学基金项目(51209162)
关键词
径流预报
精度
逐步回归法
LMBP算法
大通水文站
runoff forecasting
precision
stepwise regression
LMBP algorithm
Datong hydrologic station