期刊文献+

有限半模格的Hasse图

Hasse Diagrams of Some Finite Semimodular Lattices
下载PDF
导出
摘要 主要是应用正整数的有序分拆,研究了有限格及其Hasse图问题,证明了有限格和有限格对应的Hasse图在同构意义下是一一对应的;引进了一个格的Hasse图的格类的概念,并给出了一种画n个顶点的格对应的Hasse图的简便而有效的方法,并且研究了有限半模格的Hasse图的一些性质. In this paper ,we mainly study finite lattice and its Hasse diagram by using the parti-tion of a positive integer .We prove that the finite lattice and its corresponding Hasse diagram is one-to-one in the sense of isomorphism .We introduce the notion of class of a lattice and give a concise and effective way to draw a Hasse diagram of a lattice of n vertices .We also study some properties of Hasse diagrams of semimodular lattices .
出处 《广西师范学院学报(自然科学版)》 2014年第2期4-9,共6页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 国家自然科学基金项目(11161006 11171142) 广西自然科学基金项目(2011GXNSFA018139) 广西"新世纪十百千人才工程"项目
关键词 格类 Hasse图 整数分拆 lattice class of a lattice Hasse diagram partition of an integer
  • 相关文献

参考文献7

二级参考文献21

  • 1吴妙玲,张昆龙.有1模格的几个等价定义[J].内蒙古大学学报(自然科学版),2005,36(3):241-243. 被引量:5
  • 2Grtzer G. General lattice theory[M]. New York:Academic Press, 1978.
  • 3Birkhoff G. Lattice theory,vol. XXV[M]. AMS Colloquium Publications,Providence,Rhode Island, 1967.
  • 4Mccune W, Padmanabhan R, Veroff R. Yet another single law for lattices[J]. Algebra Universalis, 2003, 50: 165-169.
  • 5Mccune W, Padmanabhan R. Single identities for lattice theory and for weakly associative lattice[J]. Algebra Universalis, 1996, 36(4): 436-449.
  • 6Higman G, Neumann B H. Groups as groupoids with one law[C]//Publicationes mathematicas debrecen, 1952(2): 215-227.
  • 7Sholander. Sbolander's basis for distributive lattices[EB/OL], http://www.mcs.anl.gov.
  • 8McKenzie R. Equational bases for lattice theories[J]. Math Scand, 1970, 27: 24-38.
  • 9Padmanabhan R. Equational theory of algebras with a majority polynomial[J]. Algebra Universalis, 1977, 7: 273-275.
  • 10Veroff R. Lattice theory[EB/OL], http://www.cs.unm.edu/-veroff/LT/..

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部